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Abstract—A set of primary formulations of Barbilat Lemma
and its simple alternatives are summarized. The relationships
among those formulations and their applicable scopes are in-
vestigated. The applications of Barbilat Lemma in analyzing
asymptotic convergence of the system, adaptive control design
and L, stability are discussed via three examples.
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I. INTRODUCTION

As is well known, stability is the most important perfor-
mance specification of various control systems. Therefore,
developing methods for effectively analyzing and determining
the stability of control systems has always been a hot topic
in control theory research [1]-[8]. In the late 19th century,
Russian mathematician A. M. Lyapunov proposed the famous
Lyapunov theory. This theory, with the emergence of control
theory, has become the main method for analyzing and in-
vestigating the stability of control systems, and has gradually
matured in the latter half of last century [1]-[4].

Without requiring exact solution of the system, Lyapunov
theory determines the stability of system through the qualita-
tive analysis of a function similar to the energy function. So
far, the Lyapunov theory has long been the most general and
effective method for investigating and determining the stability
of the systems, especially for nonlinear systems. However,
classical Lyapunov stability theory exists limitations. For one
example, it is difficult to construct Lyapunov functions whose
derivatives are negative definite (or negative semidefinite). For
another example, when the derivative of Lyapunov function is
negative semidefinite, asymptotic stability cannot be obtained,
which sometimes cannot meet certain practical requirements.

LaSalle invariance principle overcomes some limitations
of classical Lyapunov theory, which enables the asymptotic
convergence of nonlinear autonomous (time-invariant) systems
to be obtained even when the derivatives of Lyapunov-like
functions are negative semidefinite [2]. However, LaSalle
invariance principle is not applicable to the analysis of asymp-
totic convergence of nonlinear nonautonomous (time-varying)
systems.
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Barbilat Lemma makes up for the deficiency of LaSalle
invariance principle [6]. This lemma is a purely mathemat-
ical result concerning the asymptotic behavior of functions
and their derivatives. Even so, if we can apply the lemma
appropriately, such as finding Lyapunov-like functions with
negative semidefinite derivatives, then the asymptotic conver-
gence can be obtained for nonlinear nonautonomous systems.
Nowadays, Barbalat Lemma plays an increasingly important
role in control theory, especially in adaptive control theory [7].
While Barbalat Lemma has its basic and purely mathematical
expression, it has become more diverse and been enriched
with the development of control theory, to better analyze and
study the asymptotic convergence of various nonlinear and
nonautonomous systems [6], [9], [10].

II. BARBALAT LEMMA

Although Barbalat Lemma in this section is presented for
the single variable, it is also applicable to multiple variables.

A. The Primary Formulations of Barbdlat Lemma

Barbidlat Lemma has been widely applied in the stability
analysis of control systems since its proposal. The most
commonly used formulation of this lemma is as follows:

Lemma 1: [6] Suppose z : [0,00) — R is continuously
differentiable and 1Lm x(t) exists. If (¢) is uniformly con-
tinuous on [0, 00), then tliglo x(t) = 0.

If #(t) exists and is bounded, then the uniform continuity
of #(t) in Lemma 1 can be replaced by the boundedness of
Z(t) to obtain the following formulation of Barbédlat Lemma.

Lemma 2: [6] Suppose z : [0,00) — R is continuously dif-
ferentiable and tlim x(t) exists. If Z(¢) exists and is bounded
on [0, 00), then tlim z(t) = 0.

The following corollary is obvious.

Corollary 1: If x : [0,00) — R is uniformly continuous, and
tlggo fot x(7)d7 exists and is bounded, then tlirglo z(t) = 0.

B. Several Alternatives of Barbdlat Lemma

The primary formulation of Barbdlat Lemma can determine
the asymptotic convergence of systems to a certain extent.
Nevertheless, the formulation has some limitations in practical
applications because it is difficult to combine with Lyapunov



theory. To this end, by extending and deforming the primary
formulation of Barbdlat Lemma, we obtain the following
formulations of Barbdlat lemma.

Lemma 3: If x : [0,00) — R is uniformly continuous and
there exists p € [1, c0) such that x € L,*, then tli>rcf>lo x(t) = 0.

Proof. When p = 1, from ||z3| — |z1|| < |z2 — x| and the
uniform continuity of x, it follows that |z| is also uniformly
continuous. Let F(¢ fo |z(7)|dr,t > 0. Then, applying
Lemma 1, we have F( ) = |x(t)|, and in turn the convergence
of z(t).

When p > 1, suppose by contradiction that lim z(t) =
0 does not hold. Then there exists a constant sb_gc 0 such
that for any T > 0, there is t7 > 0 such that |z(tr)] >
€o. Based on this, we can get an infinite time sequence 2 =
{ti,i =1,2,---} such that |z(t;)| > e, Vt; € Q. Since z(t)
is uniformly continuous, for given &, there exists n(gp) > 0
such that for any ¢/, t” € {¢/,t" : |t —t"| < n,t',¢" € [0,00)},
there is

€0

2(t') — (") < 2.

Then, for any t € B, £ {t : |t — t;| < n,t € [0,00),t; € Q},
there is

lz(®)] =

€0
2 ot = |2(t) —2(t)] = 7,
that is,
P> vien
2Ol = 28, vie B,

The continuity of x(¢) implies that z(¢) always keeps
positive or negative on B,. So for all ¢; € (2, there is

t+77 ti—mn
‘/ (t)[Pdt — / |z (t |pdt’

f BT ef £0
Pdt > —dt > 2n—
= [ latorars [ Sars 2t

i—"N i—n
which means

tit+n 88
li Pdt > 2n—. 1
A ] e 2
However, noting [, [#(t)[Pdt = ps < oo, we have
ti+n
lim / |z(t)|Pdt
ti—)OO,tiEQ ti—n
tit+n ti—n
= lim / |z(t)|Pdt —  lim / | (¢)|Pdt
t;—00,t; EQ 0 t;—00,t; €Q) 0
= Poo — Poo = 0.

This obviously contradicts (1).

It is well known that Lyapunov theory is a main tool for
analyzing stability of systems and convergence of parameters.
Barbidlat Lemma in the following formulation has been ex-
tensively applied in the fields of adaptive control, parameter
estimation and absolute stability, due to it is easy to establish

*Lp = {ac|a: £ 0,00) — Ryand ([ |a(t)|Pdt) /P < oo},p €
[1,00).

a direct connection between Barbdlat Lemma and Lyapunov
theory.

Lemma 4: [9] Suppose z : [0,00) — R is square integrable,
ie., hm fo 7)dr < oo. If &(t) exists and is bounded on
[O,oo) ‘then hm x(t) = 0.

t— o0

Proof. By the existence and boundedness of &(t) on [0, c0),
it is easy to know that z is uniformly continuous. Therefore,
from Lemma 3, we can obtain tlgglo x(t) =0.

In the following, we provide another proof method. Due to
the existence and boundedness of &(t) on [0, 00), there exists
¢ > 0 such that |£(t)|] < ¢,Vt € [0, 00). From this, it follows
that for any ¢ > 0,e > 0, there is

t+
20 -+ = | [
tte b e
S/ 3|a:2(7')j3(7')|d7§/ 3cx?(t)dr. (2)
t t

By the square integrability of x, we know for any ¢ > 0,
there exists 7" > 0 such that (t > T)

t+e
d<—
/t P (r)ir <

Then, it follows from (2) that |23(t) — 23(t + €)] < ¢

for any t > T. This means that there is a constant L

such that lim z3(t) = L, ie., lim z(t) = L3. Due
t—o0 t—o00

to tlgrolo fot |z(7)[?dT < oo, we have L must be 0. Thus

tlirgo x(t) = 0.

Lemma 4 can not only be used to combine with Lyapunov
theory to study the asymptotic convergence of systems [6], [8],
but also to investigate the stability of nonlinear control systems
with square-integrable disturbances [3], [11], [12]. Note that
the disturbance of the system sometimes is L, p € [1,00). We
thus extend Lemma 4 to Lemma 5 which has a wider range of
applications. For instance, Lemma 5 can be used to investigate
the L,, stability of system with L,-disturbance, p € [1,00).

Lemma 5: Suppose z : [0,00) — Ris Ly, p € [1,00) and
#(t) is bounded on [0, c0). Then tlggo x(t) =0.

Proof. The proof is similar to that of Lemma 3.

The two formulations of Barbdlat Lemma presented below
have milder conditions, compared with various formulations
of Barbalat Lemma previously mentioned. Thus they have a
broader range of applications.

Lemma 6: Suppose x : [0,00) — R is absolutely con-
tinuous. If z(t) € L,,p € [1,00) and for any compact set
C € [0,00), &(t) is uniformly locally integrable on [0, c0),
then tli}r{.lo x(t) = 0.

Remark 1: If for given € > 0, there exists ¢ > 0 such
that for any finite sequence of mutually independent intervals
{(ar,a])} and Y0 [a) — @] < o there is Y0, |f(a}) -
f(z;)] < e, then function f : [a,b] — R is absolutely
continuous.

Remark 2: Let x : [0,00) — R be a measurable function.
If for any € > 0, there exists ¢ > 0 such that for all £ > 0,
I e |z(¢)|dt < e, then z is uniformly locally integrable on a
compact set C' (any function belonging to L,,p € [1,00) is
uniformly locally integrable).

(r)dr



Proof. From the uniform local integrability of & over any
closed intervals belonging to [0, c0), it follows that for given
€ > 0, there exists § > 0 such that for t; > 0,ty < t; + 9,

/ #(r)

From the definition of uniform continuity, it can be obtained
that «(¢) is uniformly continuous on [0, o). Then, by Lemma
3, we have lim z(t) = 0.

dT’ = |z(ts) — z(t:)] < e

We preseﬁ?tfloe following lemma which is more general than
Lemma 6.

Lemma 7: Suppose a : RT — R" is continuous and
nondecreasing, and «(0) = 0 if and only if z = 0. If

: [0,00) — R is uniformly continuous and «(|z(t)|) € Ly,
then hm a(]z(t)]) =0 and in turn hm z(t) = 0.

Proof Suppose by contradiction that hm allz(®))) = 0
does not hold. Then there is a constant 50 ;OO such that for
any T > 0, we can find tr > T to ensure a(|z(t)|) > &, i.e.,
|z(tr)| > a~t(eo). Based on this, we can get an infinite time
sequence ) = {t;,i = 1,2,---} such that «(|x(¢;)]) > o,
ie., |z(t;)| > a™(eg), Vt; € Q. From the uniform continuity
of z(t), it follows that for given eg, there exists n(eg) > 0
such that for ¢,¢" € {t/,¢" : |t/ — | < n,t', 1" € [0,00)},

—1
(t) - a(e")] < 2.
Therefore, for any t € B, = {t : [t —t;| < n,t € [0,00),t; €
Q}, there is

|z (t)]

|(ti) + (t) — =(t:)]
> a(t)] = fa(t) — x(t:)] =

a~l (50)

2
The continuity of x(t) implies that x(t) always keeps positive
or negative on €2,. Then, from the monotonicity and continuity
of av and a(z) # 0, x # 0, it follows that «(|z(t)]) is always

positive on €,,. Thus, for ¢; € (2, there is

[ atmonar - [ atieoar

\/Hn (Jz(t) dt’ /tJrnaal(eo)/?)dt

> 2na(at(e0)/2).

This means that

ti+n
/ af|z(t))dt > 2na(a(0)/2). (3)

ti—n

lim
t;—00,t; €EQ

However, it is known that [~ a(|z(t)|)dt = as < oc.

Therefore,
ti+mn
I
[ agea

‘ ti+n
~  lim / o[z (t)))dt

ti—00,t; EQ 0

ti—mn
_tiﬁlogyrilfieﬂ/o a(“r(t”)dt
= Qo — Qo = 0.

This obviously contradicts (3).

C. Barbdlat Lemma and Lyapunov Theory

We have already known that the Lyapunov direct method is
the most commonly used method for analyzing the stability
of autonomous systems (time-invariant systems). Barbdrat
Lemma is a commonly used method for analyzing the stability
of nonautonomous systems (time-varying systems). Lyapunov
theory can also be used to analyze the stability of non
autonomous systems, but the shortcoming is that the required
conditions are more complex and strict.

The following theorem is common Lyapunov theory used
for stability analysis of nonautonomous systems.

Theorem 1: [6] Let x = 0 be an equilibrium point and
Qr € R” be a ball containing = 0. There is a continuously
differentiable function V : Qx x [0,00) — R such that

(1) V(x,t) is positive definite, that is, V(x,t) >
Vo(z),Va € Qg,Vt € [0,00), where Vp : Qp — RT
is a positive definite function.

(2) V(x,t) is negative semidefinite, that is, V(z,t) <
0,Vx € Qg,Vt € [0,0).

Then equilibrium point O is stable in the sense of Lyapunov
on Qi € R”.
Moreover, if

(3) V(z,t) < Vi(x),Vx € Qg,Vt € [0,00), where V] :
Qr — R" is a positive definite function and V (0,¢) =
0,vt € [0, 00).

Then equilibrium point 0 is uniformly stable on Q € R".
If condition (2) becomes:

2y V(x,t) is negative definite, that is V(x,t) < 0,Vx €

Qr\{0},Vt € [0,00), and V(0,t) = 0,V € [0, 00).
Then equilibrium point O is uniformly asymptotically stable
on Qr € R”.

If Qr = R", then it is the global Lyapunov stability theory.

Although Lyapunov stability theorem mentioned above has
been widely applied in stability analysis and theoretical re-
search of practical systems, it is sometimes difficult to find
Lyapunov functions with negative definite derivatives when
applying this theorem to analyze asymptotic stability of sys-
tems. LaSalle invariance principle can handle situations where
derivatives of Lyapunov functions are negative semidefinite,
but it only applicable to autonomous systems. Barbdlat Lemma
makes up for the deficiencies of Lyapunov stability theorem
and LaSalle invariance principle, playing a critical role in
analyzing the stability of nonautonomous systems.

The following formulation of Barbdlat lemma is common
in stability analysis of nonautonomous systems.

Lemma 8: [6] If a continuously differentiable function
V : R" x [0,00) — R has a lower bound and V(z,t)
is negative semidefinite and uniformly continuous in ¢, then
tliglo V(z,t) = 0.

Remark 3: The differences between Barbdlat Lemma 8 and
Lyapunov stability theorem 1 lies in: (1) Lemma 8 only require
V(z,t) to be a function with a lower bound and not necessarily
to be positive definite function; (2) In addition to ensuring that
V(a:,t) is negative semidefinite, Lemma 8 also requires the
uniform continuity of V'(z,t) with respect to t.



III. APPLICATIONS OF BARBALAT LEMMA IN ANALYSIS
OF SYSTEM STABILITY

A. Asymptotic Stability Analysis

Example 1: Consider the following second-order system and
analyze its stability:

&1 = —x1 + zaw(t),
.1'32 = —xlw(t).

where w is a bounded continuous function.
Analyze. Choose V (t) = 23 + x3. Then

V =2z (—x1 4 2ow(t)) + 2zo(—z1w(t)) = —222 < 0.

From this, it can be obtained that sup,~, V (¢) < V(0), i.e.,
V(t) is bounded, which means 1 and 5 are bounded. Due to
V(t) = —4x (—x1 +zow) and the boundedness of w(t), V (t)
is bounded. Thus V(t) is uniformly continuous with respect to
t. It can be obtained that tlggo V(t) = 0 by applying Lemma
8. Furthermore, tlggo x1(t) = 0.

It should be pointed out that although z; eventually con-
verges to 0, the system is not asymptotically stable. Because
only the boundedness of x can be guaranteed but not the
asymptotic convergence of xs.

B. Applications in Adaptive Control Design

Generally, adaptive control design is divided into the follow-
ing three steps: (1) choose appropriate unknown parameters;
(2) design adaptive laws for unknown parameters and adaptive
controllers; (3) analyze the stability of closed-loop control
systems.

The following example fully demonstrates the three steps
of adaptive control design, and applies Barbdlat Lemma to
analyze the stability and convergence of the designed adaptive
control system.

Example 2: Consider first-order nonlinear system: & = au+
bx?, where x € R and u € R are the system state and control
input, respectively; a # 0 is a constant with known sign; b is
an unknown constant. Our objective is to design an adaptive
controller and determine the stability and convergence of the
closed-loop system.

Analyze. Choose 61 = 1/a, 05 = b. Denote the estimate of
0 = [1/a,b]T € R® by 6 = [0,0,]7 € R% We use 0 =
[61,62]7 = 6 — 6 to denote the estimate error. Since

1
b = a-=-b=a-01 -0
a, ~ A ~
= a- (1 +61)(b> +02)
= ab16s + ab10s + ab 02
= a9192 + a9192 + 02,
system & = au + bz? is equivalent to
& =a(u+ éléng) + aby0ox? + 0o, )
Choose Lyapunov function candidate V (z, 5) = %z + %9? +
%ég Note that 51 = —él and 52 = —ég. Then, taking the time

derivative of V' along all possible solutions of system (4), and
by adding and subtracting term —c;z? (¢; > 0), we get

V = x4+ |a|§1§1 + égég

= x(a(u + é1é2m2)+a§1é2x2+§2x2)— ‘a|é1é1 - égég
—c12% 4+ alu + c1bhx + éléng)x — a(élsign(a)
—c12% — 0323)0; — Oo(0s — 2°). (5)

Thus, we can design the adaptive controller as follows:
u = 7619}58 - élégl’z, (6)

where 6; and 6, satisfy the following adaptive regular laws:

{0} = sign(a)(cy + Oox)x?, o
0y = 3.
Substituting (6) and (7) into (5), we have

V= —cyz2. )

Thus V' is bounded and z is square integrable, which means
T, 91 and ég are bounded. Since 6, and 0, are both constants,
51 and 52 are also bounded. Therefore, = is bounded. So far,
the asymptotic convergence of the state has been obtained by
Barbilat Lemma 4, i.e., tlgrolo x(t) = 0.

Remark 4: It is known from Example 1 and Example 2 that
when V is positive definite and V is negative semidefinite.
Using Lyapunov theory, we can only obtain bounded stability
of the systems, but cannot ensure their asymptotic stability.
Barbalat Lemma makes up for the deficiency of Lyapunov
theory and is an important tool to determine the asymptotic
stability of adaptive systems.

C. Stability Analysis of Systems with L,,-disturbance

Example 3: Consider the following first-order time-varying
nonlinear system

& = a(x,t) + b(x, t)d(t), ©)
y = h(z(t)).
where € R, disturbance d € L,,p € [1,00),a : R x

[0,00) = R,b : R x [0,00) — R,k : R — RT. Assume
that for given ¢ > 0, a and b are continuous with respect to
x, for every given z, a and b are measurable with respect to ¢,
and for any compact set C' € R, a and b are both uniformly
bounded on C' x R™. h is continuous and nondecreasing. If
V : R — R is locally Lipschitz, positive definite and radially
unbounded, and satisfies

V(z,t) < —h(z(t)) +|d(t)",
0. If h(z) =

(10)

then thj& h(z(t)) = 0 & 2 = 0, then
tlggo x(t) = 0.

Analyze. From properties of functions a and b, the solution x
of system (9) exists, and for any initial state x, x is absolutely
continuous on [0,00). Due to d(t) € Lp,p € [1,00), d(t) is
uniformly locally integrable. From this and (9), & is uniformly
locally integrable. Since x is absolutely continuous, z is
uniformly continuous on [0, c0). From (10) and d(t) € Ly, it
can be obtained that x(t) is bounded, i.e., € Lo, and h(x)
is integrable and its integral is bounded, i.e., h(z) € L;. Thus,
we can get tliglo h(z(t)) = 0 by applying Barbdlat Lemma 7.
Furthermore, if h(z) =0 < x = 0, then tlgglo z(t) = 0.



In Example 3, if Lyapunov theory is used to analyze such
nonlinear nonautonomous systems with disturbance d(t) € L,,
the asymptotic convergence of the system output cannot be
obtained.

IV. CONCLUSION

A set of primary formulations of Barbalat Lemma and its
simple alternatives have been summarized. The relationships
among those formulations and their applicable scopes have
been investigated. First, the primary formulations of Barbélat
Lemma (Lemma 1, Lemma 2 and Corollary 1) have been
given. Specifically, Lemma 1 is the purely mathematical
expression. Lemma 2 is obtained by replacing the uniform
continuity of the function in Lemma 1 with the boundedness
of its derivative. Corollary 1 is another formulation of Lemma
1. Second, some alternatives (Lemma 3-7) of Barbélat Lemma
have been given. By replacing the integrability in Corollary
1 with L,-integrability (p € [1,00)), Lemma 3 has been
proposed. Moreover, by replacing the uniform continuity of
the function by the boundedness of its derivative, we have
deduced Lemma 4 and Lemma 5. Under milder conditions
than Lemma 1-5, Lemma 6 and Lemma 7 with a broader range
of applications have been derived. Finally, the differences and
connections between Barbdlat Lemma and Lyapunov theory
have been investigated, and a Lyapunov-like Barbalat Lemma
8 has been given. This lemma has been widely applied in the
asymptotic stability theory of nonlinear time-varying systems.
In order to better understand the important role of Barbalat
lemma in stability analysis of systems, three examples have
been given to illustrate the applications of Barbédlat Lemma
in analyzing asymptotic convergence of the system, adaptive
control design and L, stability.
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3119 B x:[0,0) > RI—FriEa T,
HY ¢ — oo BFABME, WE 2(¢),t € [0,%) —
BEs, M Alims (1) = 0.

MR () FAHAR 25119 2(0) H—
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