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Abstract At present, one typical control strategy for guaranteeing transient and steady-state performance

is funnel control and prescribed performance control. The strategy features completely discarding the sys-

tem nonlinearities, even if they are completely known and available. Such an intrinsic feature requires the

controller to produce a larger control effect to eliminate the negative impact caused by the high nonlinear-

ities, leading to a conservative controller. In this paper, we fully take advantage of known information on

nonlinearities in control design, instead of completely discarding it as done in funnel control. Particularly, we

leverage adaptive techniques (i.e., high-gain dynamic compensation) to deal with unknown system nonlin-

earities. Meanwhile, we integrate the tools of output feedback, tracking control, and performance guarantee.

As such, an adaptive output-feedback scheme is developed for global tracking with spatiotemporal perfor-

mance specifications: arbitrarily given tracking accuracy and accuracy-ensured time. A simulation example

supports the developed approach.
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1 Introduction

For real plants, what the users/operators care about most tends to be the entire evolution of the concerned

quantities during the whole system running, instead of only their steady state. This is due to poor

transient behavior accounting for serious consequences, economically or safely. As such, it becomes an

imperative and urgent task to shape the transient behavior as it is expected/prescribed to be in a safe

system running. One typical control strategy for guaranteeing transient and steady-state performance is

funnel control (FC) [1–4] as well as prescribed performance control (PPC) [5–8].

This paper attempts to settle global tracking1) via output feedback with prescribed performance for

uncertain nonlinear systems in the context of unknown control direction. Notably, the unknown high

nonlinearities are present in each signal channel, gravely perturbing system evolution and in turn entailing

more powerful compensation. If the system in question degenerates to the Byrnes–Isidori canonical

form (i.e., merely involving input matched nonlinearities) with known control directions, the semi-global

tracking has already been solved in [6] by use of PPC proposed in [5] and has also been attacked in [3] by

means of FC. In addition, semiglobal extensions have been performed for multiagent systems (MASs) with

* Corresponding author (email: lygfr@sdu.edu.cn)
1) Throughout, global tracking is in the practical sense, i.e., for any initial value and any tracking accuracy λ, the

tracking error can be steered to the λ-neighborhood of the origin.
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measurement uncertainties [9] and stochastic MASs as well [10] by additionally using tuning functions.

However, we are interested in a global solution instead of a semiglobal one, which naturally excludes the

control strategies therein.

In contrast, a seminal work [2], also aiming for the special systems in the Byrnes–Isidori canonical

form, utilized FC to realize global tracking. As a typical feature of FC, no information on system

nonlinearities was used for control design. This feature is quite appealing when little or no information is

known on the nonlinearities [2–4]. However, this, in turn, makes it hard for the available information on

the nonlinearities to be used in FC. If there was available information on the nonlinearities, it would be

reasonable and anticipated to fully exploit the information in controller design. For instance, nonlinearity

f(x) satisfies |f(x)| 6 θf̄(y) with known f̄(·). Using the known f̄(y) in the controller, instead of discarding

it as if f(x) were completely unknown (as done in FC), could lead to less conservatism of the control

effect.

On the other side, for a global goal [2,4], the performance boundaries with infinitely large initial values

would potentially account for an excessively large bound of system states on initial intervals (i.e., the

possible short-time inability of the controller). This is mainly because only when the states approach

the boundary will the controller take drastic action to pull them back. However, when the states have

not approached the arbitrarily large boundary on a small initial interval, the control action could be not

strong enough and no other mechanism (like adaptive dynamic compensation) is used to help. Therefore,

the unknown nonlinearities (not embodied in the controller) may rapidly “drive” the states to extremely

large values.

With the above insights, we put forward a promising global output-feedback scheme by merging adap-

tive compensation. On the one hand, a dynamic high gain with tailored dynamics is leveraged to aid

in governing the unknown high nonlinearities and mitigate the possible excessive largeness during the

small initial interval. In the course, the known information of system nonlinearities is particularly used

in control design, unlike FC where the nonlinearities are completely discarded at the risk of the potential

short-time inability. By injecting the high gain into the observer, not only is the boundedness (instead of

ISS) of scaled observer error directly obtained, but the design and analysis are largely simplified compared

with [11] where two sets of Lyapunov functions are pursued to get around technical difficulties. Besides,

we especially borrow the pseudosign and pseudo-dead-zone functions from [11,12], whose absolute values

are sufficiently smooth. Their introduction reduces the use of completing the square in the control design

and leads to a tighter and less conservative controller.

On the other hand, in this paper, the prescribed transient and steady-state performance manifests

itself in two appealing specifications — prescribed accuracy-ensured time and arbitrarily given tracking

accuracy. Confronted with the performance specifications, we resort to a time-varying performance

boundary, inspired by the existing performance-guaranteed strategies [2,6,7,13]. The boundary itself does

not enter into the controller, unlike in [5, 6]; hence, it can have an infinitely large initial value, making

the global goal feasible. In particular, multiple functions are pieced together to form the time-varying

boundary, instead of merely one function being utilized, which allows the tracking error to have different

evolution stages. Concretely, before reaching the prescribed accuracy, the tracking error is first steered to

a relatively low level. Then after a pregiven amount of time (i.e., the low-level ensured stage), it enters the

expected strip. Prescribing the two moderate tracking levels (or even more, if needed) not only guarantees

the desired performance, but also gives consideration to the related cost (since simply pursuing a small

tracking accuracy and/or small accuracy-ensured time could be at the cost of excessive control effect).

To make the time-varying boundary shape the tracking error, a spatiotemporal performance function is

exploited. By use of such a function, forcing the tracking error to evolve within the boundary naturally

reduces to the boundedness of the spatiotemporal performance function. Subsequently, by integrating

the spatiotemporal performance function into the Lyapunov function design, the control goal further

reduces to the boundedness of all system signals, which is a less ambitious goal. It turns out, after

concise Lyapunov analysis, the proposed adaptive controller achieves global tracking with guaranteed

performance.
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2 Notations and Preliminaries

We assemble some notations used throughout this paper, and particularly introduce several important

lemmas that will be used frequently in the later development.

For x ∈ Rn, we use xi to denote its i-th element, and let x[i] = [x1, . . . , xi]
T. By diag{x1, . . . , xn},

we refer to the diagonal matrix with these xi’s on its principal diagonal. We write Ci for the set of all

functions with continuous partial derivatives up to i-th order, i ∈ N, and C∞ for the set of all smooth

functions.

We denote by sign(·) the sign function. We use N(·) to denote the Nussbaum function with the

following properties:

lim sup
k→∞

1

k

∫ k

0

N(s) ds = +∞, lim inf
k→∞

1

k

∫ k

0

N(s) ds = −∞,

which is the sole way to the continuous solution for control problems with unknown control directions

[12,14,15].

We now introduce five technical lemmas. The first two are drawn from [12], Lemmas 3 and 4 from [11],

and the last one from [15].

Lemma 1 ([12]). There is an explicit function Pn : [−1, 1]→ [−1, 1] with the following properties:

(i)(i)(i) Pn(x) is Cn on (−1, 1);

(ii)(ii)(ii) Pn(0)=0, lim
x→1−

Pn(x)=+1 and lim
x→−1+

Pn(x)=−1;

(iii)(iii)(iii) lim
x→1−

P (i)
n (x)=0 and lim

x→−1+
P (i)
n (x)=0 for i = 1, . . . , n, where P

(i)
n (x) denotes the i-th derivative of

Pn(x).

Lemma 2 ([12]). The following defined pseudosign function sgnµ,n(·) is Cn on R (indexed by parameter

µ > 0):

sgnµ,n (x) =

{
sign(x), |x| > µ,

Pn
(
x
µ

)
, |x| < µ,

which approaches the sign function as µ goes to zero.

We use Figure 1 to illustrate the sign function sign(x) and the pseudosign function sgnµ,n (x).

Figure 1 Sign function sign(x) and pseudosign function sgn 1
2
,2(x) with P2(x) = 12x5 − 10x3 + 15

4
x, left and right,

respectively.

Lemma 3 ([11]). There is an explicit function Qµ,n : [−µ, µ]→ [0, µ] with the following properties:

(i)(i)(i) Qµ,n(x) is Cn on (−µ, µ);

(ii)(ii)(ii) limx→µ− Qµ,n(x) = µ and limx→−µ+ Qµ,n(x) = 0;

(iii)(iii)(iii) limx→µ− Q
(1)
µ,n(x) = 1 and limx→µ− Q

(i)
µ,n(x) = 0, i = 2, . . . , n, and limx→−µ+ Q

(j)
µ,n(x) = 0, j =

1, . . . , n.

Lemma 4 ( [11]). The following defined pseudo-dead-zone function Dµ,n(·) is Cn on R (indexed by

parameter µ > 0):
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Dµ,n(x) =


(|x| − µ)sign(x), |x| > 3

2µ,

Qµ
2 ,n

(|x| − µ)sign(x), 1
2µ < |x| <

3
2µ,

0, |x| 6 1
2µ,

which can be viewed as an approximation of the ideal dead zone function.

We use Figure 2 to illustrate the ideal dead zone and pseudo-dead-zone Dµ,n(x).

Figure 2 Ideal dead zone and pseudo-dead-zone D1,2(x), left and right, respectively. For D1,2(x), it is associated with

Q 1
2
,2(x) = − 1

2
x4 + 3

4
x2 + 1

2
x − 3

32
; the blue curve segments in the first and third quadrants are generated by functions

− 1
2
x4 + 2x3 − 9

4
x2 + x− 5

32
and 1

2
x4 + 2x3 + 9

4
x2 + x+ 5

32
, respectively.

Lemma 5 ([15]). Suppose that V (·) and k(·) are C1 functions defined on [0, tf ), 0 < tf 6 +∞ and

V (·) also is nonnegative. If for an even C∞ Nussbaum function N(·), there is

V (t) 6 c1 +

∫ t

0

(
gN
(
k(s)

)
+ c2

)
k̇(s) ds, ∀t ∈ [0, tf ),

then k(t), V (t) and
∫ t

0
N
(
k(s)

)
dk(s) are bounded on [0, tf ), where c1, c2 and g 6= 0 are constants.

3 Problem Formulation and Performance Boundary Establishment

3.1 System description

As is argued previously, transient behavior is as comparably important as steady-state behavior to guar-

antee the feasibility of controllers in practice. Typically, the exact duration that the tracking error spends

in reaching the prescribed tracking accuracy acts as a critical specification for real plants. Therefore,

we confine ourselves to global tracking with the prescribed performance, i.e., arbitrarily given tracking

accuracy and prescribed accuracy-ensured time, for the following typical uncertain nonlinear system:
ẋi = gixi+1 + fi(t, x), i = 1, . . . , n− 1,

ẋn = gnu+ fn(t, x),

y = x1,

(1)

where x = [x1, . . . , xn]T ∈ Rn is the system state vector with the initial value x(0) = x0; u ∈ R and

y ∈ R are the control input and measurable output of the system, respectively; fi(t, x)’s are unknown

nonlinearities, piecewise continuous in t and locally Lipschitz in x; gi’s are unknown nonzero constants,

called control coefficients of the system.

Remark 1. Throughout, we limit ourselves to the context of unknown control directions. Such a severe

uncertainty prevents system nonlinearities from essentially depending on unmeasured states [11, 16–19].

In fact, even for FC, the completely unknown nonlinearities have to be output-dependent in essence [2,4].

Below we provide a new strategy to show how to make full use of the available information on nonlin-

earities in control design when pursuing a global goal and performance guarantee.

Assumption 1. For the unknown nonlinearities fi(t, x)’s, there are known smooth nonnegative func-

tions f̄i(y)’s and an unknown nonnegative constant θ, such that

|fi(t, x)| 6 θf̄i(y), i = 1, . . . , n.
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Assumption 2. The reference signal yr, only of known current value, is continuously differentiable.

Moreover, there is an unknown constant Mr > 0 such that

sup
t>0

(|yr(t)|+ |ẏr(t)|) 6 Mr.

Assumption 1 depicts an underlying nonlinear growth limitation that fi(·)’s should fulfill in the context

of unknown control directions and output feedback [11]. As detailed in Remark 1, the nonlinearity growth

is required to be output-dependent only, instead of unmeasured-state dependent, due to the unknown

control directions. Overcoming the requirement calls for breakthroughs in control methodologies. On the

other hand, many real plants can be simplified as special cases of system (1) under Assumption 1, such

as controlled pendulum, Chua’s circuit and ship steering [20–22].

Assumption 2 is a mild one for global tracking in the practical sense, under which merely some crude

dynamic knowledge on yr is required in addition to its current value. This assumption is in line with a mass

of actual situations, such as path planning with autonomy and tracking the targets with maneuverability

[20,21], in which cases only the current value of the path/target yr can be measured by sensors.

For all-around inspections of the control problem, the assumptions are also expected to be compared

with those in the typical works of performance guarantee [1–6]. In [1,2,4], unknown system nonlinearities,

though written as functions of all system states, are essentially output dependent only, akin to Assumption

1. More importantly, for the available part of the nonlinearities (i.e., the f̄i(·)), it cannot be used in the

controller design in FC strategies [1, 2, 4], but rather is still treated as completely unknown. This would

potentially lead to a conservative controller and also entail complicated analysis to disclose the system

performance. Work [5] put itself in the state-feedback scenario and required known control directions.

Therein the nonlinearities could be much higher with respect to system states, while for output-feedback,

high nonlinearities on unmeasured system states can lead to no global continuous output-feedback control

(see [23]). Yet if one does not pursue a global goal but rather a semiglobal one, system nonlinearities and

unknown control coefficients as well can be further relaxed (see, e.g., [3, 6]).

3.2 Control objective and line of thought

In this paper, we are dedicated to designing an adaptive output-feedback controller to achieve global

tracking with the prescribed performance for system (1) under Assumptions 1 and 2. Specifically, the

controller shall guarantee that for any initial data,

(i)(i)(i) all signals of the closed-loop system are well-defined and bounded on [0, +∞);

(ii)(ii)(ii) tracking error er = y − yr fulfills the prescribed spatiotemporal constraint: for any given times Tλ̄
and Tλ (0 < Tλ̄ < Tλ), tracking error decreases to a moderately low level λ̄ at Tλ̄, while it reaches

the anticipated tracking accuracy λ (λ < λ̄) at Tλ. Furthermore, on [0, +∞), the tracking error

evolves within a prescribed performance region.

Here, [0, Tλ̄) denotes the transient stage and [Tλ̄, +∞) the steady-state stage; [Tλ̄, Tλ) stands for the

low-level-ensured stage and [Tλ,+∞) the accuracy-ensured stage; see Figure 3 below.

Apparently, boundary construction and nonlinearity compensation are two key parts to performance

guarantee. Note that FC as well as PPC uses the boundaries to enforce the evolution of the tracking error

and to suppress the effect of the completely unknown nonlinearities [2]. However, the global goal pursued

in this paper denies the use of PPC [5, 6]. In FC, the pursuit of a global goal, asking for boundaries

with infinitely large initial values, could cause a short-time inability of the controller to suppress the

completely unknown nonlinearities. This is mainly because only when the states approach the boundary

will the controller take drastic action to pull them back. However, when the states have not approached

the arbitrarily large boundary on a small initial interval, the control action could be not strong enough.

In this way, if no other mechanism (like dynamic compensation in adaptive control), as done in FC,

the unknown nonlinearities could rapidly “drive” the states to extremely large values. This potentially

accounts for an excessively large bound of system states on small initial intervals.
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In view of these, besides the necessary boundaries, a dynamic high gain L(t) is particularly introduced

to help compensate for the nonlinearity, especially during the small initial interval. This, together with

the boundaries, could better govern the error evolution and bring us some potential benefits on the

boundedness of the systems.

Therefore, for the control problem, we will exploit the performance-guaranteed strategies and the

adaptive compensation:

• The crucial performance boundary is expected to cover arbitrary initial data for the global goal, like

FC while unlike PPC.

• We want to employ the available information of the system (i.e., the known f̄i(·)’s in Assumption

1) by resorting to dynamic compensation, instead of discarding it as if the system nonlinearities were

totally unknown.

• During the control design, we borrow the pseudo-dead-zone function Dµ,n(·) and pseudosign function

sgnµ,n(·) from [11, 12] to reduce the use of completing the square for a tighter and less conservative

controller.

3.3 Typicalness of the system model

System (1), subject to Assumption 1 and unknown control directions, is typical among its various variants

in the output-feedback setting [11, 14, 15, 24–29]. To see its typicalness, we would like to exemplify its

two extensions.

With the advanced techniques developed in the related works, the extra ingredients in the extensions

would only bring about technical complexity, compared with system (1). Therefore, to highlight our core

contributions in achieving global output-feedback tracking with prescribed performance, we may as well

reduce the two extensions to the “core system”, i.e., system (1).

Besides the theoretical typicalness, system (1) can also be utilized to model many real plants. Promi-

nently, observed from system (1), the control coefficients that are unknown both in sign and magnitude

act directly upon the (virtual) controls, rendering impossible any precise control effect. It thus could

significantly weaken, or even worse, reverse the control effect, making things rather difficult in essence

to solve. Therefore, by admitting the completely unknown gi’s, more serious faults/inaccuracies in an

actuator (or equivalently in system output, e.g., y = θx1) are encompassed, while substantial difficulties

inevitably arise.

• Accommodate unmodeled dynamics that are IS(p)S with respect to output y only:
η̇ = f0(η, y),

ẋi = gixi+1 + fi(t, η, x), i = 1, . . . , n− 1,

ẋn = gnu+ fn(t, η, x),

y = x1.

(2)

In this case, the negative influence of inverse dynamics η on x-subsystem manifests in nonlinearities

fi(·)’s, according to which Assumption 1 should be adjusted to

|fi(t, η, x)| 6 θf̄i(y) + θψi(‖η‖), i = 1, . . . , n,

with known C∞ functions ψi(·) > 0. With IS(p)S properties, the inverse dynamics in system (2) can

be dealt with by adopting advanced techniques in [29, 30]. Literally, merely technical complexity in the

treatment of ψi(·)’s would emerge.

• Admit bounded additive noises in each signal channel and measurement uncertainties:
ẋi = gixi+1 + fi(x) + ωi(t), i = 1, . . . , n− 1,

ẋn = gnu+ fn(x) + ωn(t),

y = θx1.

(3)

For such a system, perform transformation ξ = θx and let f̃i(t, x)=θ
(
fi(x)+ωi(t)

)
; then system (3) can

be converted into system (1) directly and Assumption 1 holds with
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|f̃i(t, x)| 6 θ∗f̂i(y), i = 1, . . . , n,

for some unknown θ∗ > 0 and known C∞ functions f̂i(y) > 0.

3.4 Crucial performance boundary

Performance boundary characterizes/confines, to a certain extent, the overall underlying evolution of

some system states. Not only this, but it also virtually plays a decisive role in whether a control problem

can be achieved globally or semiglobally. Note that a satisfactory boundary shapes system behaviors

well, transient and steady-state; thus, it would be instrumental in guaranteeing the concerned targets

(e.g., convergence rate and tracking accuracy).

Since we are concerned with realising global tracking with prescribed performance in both temporal

and spatial aspects, the expected performance boundary ought to i)i)i) cover all possible initial values of

the tracking error at the initial time instant; and ii)ii)ii) decrease to any anticipated level at any prescribed

time, as aforementioned in control objective (ii)(ii)(ii).

Motivated by performance-guaranteed controls [2, 3, 6, 7, 13], we construct the following performance

boundary:

F(s(t)) =
s(t)√

1− s2(t)
, t > 0, (4)

where the (piecewise) design function s(t), helping boundary F(·) fulfill items i)i)i) and ii)ii)ii) above, is picked

satisfying:

(i)(i)(i) s(t) belongs to Cn on [0, +∞), monotonically decreasing, s(0) = 1 and s(t) < 1, t > 0;

(ii)(ii)(ii) s(Tλ̄) = λ̄√
1+λ̄

, s(Tλ) = λ√
1+λ

and s(t) = s(Tλ), t > Tλ;

(iii)(iii)(iii) s(t), ṡ(t), . . . , s(n−1)(t) are bounded and available for feedback, and |ṡ(t)| 6Ms for a known Ms > 0.

We want to briefly explain the underlying attributes of the prescribed boundary F(·) and how the

global tracking performance is guaranteed through these boundary/function attributes:

• Observed from (4) and the properties of s(t), boundary F(s(t)) is an increasing function with respect

to s(t) and a decreasing one concerning t.

• At the initial time instant, by letting s(0) = 1, it holds that F(s(0+)) = F(1−) = +∞ (Figure 3),

which naturally enables er(0) < F(s(0+)) = +∞, ∀er(0) ∈ R, i.e., the anticipated property i)i)i) of F(·),
in line with the global objective of the control problem.

• By requiring s(t) to pass through the pregiven points (Tλ̄, s(Tλ̄)) and (Tλ, s(Tλ)), boundary F(s(t))

shall reach low level λ̄ and tracking accuracy λ at prescribed time instants, as argued below, which renders

the fulfillment of the tracking performance given in control objective (ii)(ii)(ii).

Inspired by Dµ,n(·) that is sufficiently smooth (see Lemma 4), we provide an explicit expression of

the anticipated s(t) that fulfills properties (i)(i)(i) and (ii)(ii)(ii) so that boundary F(s(t)) characterizes different

evolution stages of the tracking error for the later design development.

Since we expect the magnitude of F(s(t)) decreases to a moderately low level λ̄ at time instant Tλ̄ and

decreases to λ (6 λ̄) at Tλ (> Tλ̄), we have

F(s(Tλ̄))= s(Tλ̄)√
1−s2(Tλ̄)

= λ̄, F(s(Tλ))= s(Tλ)√
1−s2(Tλ)

= λ,

which give s(Tλ̄) = λ̄√
1+λ̄

and s(Tλ) = λ√
1+λ

, in accordance with property (ii)(ii)(ii) of s(t).

Now, select Cn piecewise function s(t) as

s(t)=


− 1−s(Tλ̄)

Tλ̄
t+ 1, 0 6 t 6 Tλ̄,

s(Tλ)+Q ν,n(−t+ 1
2 (Tλ̄+Tλ)), Tλ̄<t<Tλ,

s(Tλ), t > Tλ,

(5)

where Q ν,n(t), analogous to Qµ,n(·) in Lemma 3, is picked such that
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• Q ν,n(t) is Cn on (−ν, ν) with ν = 1
2 (Tλ − Tλ̄);

• lim
t→ν−

Q ν,n(t)=s(Tλ̄)− s(Tλ) and lim
s→−ν+

Q ν,n(t)=0;

• lim
t→ν−

Q
(1)
ν,n(t) = 1−s(Tλ̄)

Tλ̄
and lim

t→ν−
Q (i)
ν,n(t) = 0, i = 2, . . . , n, and lim

t→−ν+
Q (j)
ν,n(t) = 0, j = 1, . . . , n.

Figure 3 illustrates the above-formulated performance boundary F(·) as well as the associated design

function s(t).

Figure 3 Evolution of the tracking error er(t) with the prescribed performance.

4 Observer Design and Dynamic High Gain

In this section, we devote ourselves to working out a dynamic-high-gain based observer and deriving

the crucial dynamics of the high gain. But before moving on, the following transformation needs to be

performed on system (1) first, to gather unknown gi’s that are distributed in each signal channel:

ξ = [ξ1, . . . , ξn]T = diag
{

1, g1, g1g2, . . . ,Π
n−1
j=1 gj

}
x. (6)

By this, system (1) is transformed into
ξ̇i = ξi+1 + φi(t, ξ), i = 1, . . . , n− 1,

ξ̇n = gu+ φn(t, ξ),

y = ξ1,

(7)

where unknown g = Πn
j=1gj and the transformed nonlinearity φi(t, ξ) = Πi

j=1gj−1fi(t, x)|(6) with g0 = 1.

Accordingly, the system nonlinear growth given in Assumption 1 is transformed into

|φi(t, ξ)| 6 θ̄φ̄i(y), (8)

with known smooth nonnegative functions φ̄i(·)’s and unknown positive constant θ̄.

Taking system (7) as a new starting point, we design the dynamic-high-gain observer as follows:
˙̂
ξi = ξ̂i+1 − Liaiξ̂1, i = 1, . . . , n− 1,
˙̂
ξn = u− Lnanξ̂1.

(9)

In (9), dynamic high gain L is generated by

L̇ = −δ1L2 + δ2L
(
1 + y2 + ‖φ̄(y)‖2

)
, L(0) > 1, (10)
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where φ̄(y) =
[
φ̄1(y), . . . , φ̄n(y)

]T
and positive parameters δi’s are such that δ1 6 1

2c2
< 1

c1
6 δ2 with ci’s

satisfying (13) below.

We can see that dynamic high gain L(t) with tailored dynamics (10) has three features corresponding

to three indispensable roles in achieving the adaptive global tracking:

• L(t) always satisfies L(t) > 1 to be a high gain, since δ2 > δ1 and L(0) > 1. This allows L(t) to be

sufficiently large to capture system uncertainties.

• L(t) is BIBS, i.e., it is bounded for bounded measurable output y. As such, the boundedness of L(t)

reduces to that of y, while the latter is implied by the achievement of the tracking goal.

• L(t) has a tailored nonlinear part “y2 + ‖φ̄(y)‖2” in its dynamics, which makes it possible for L(t)

to counteract high nonlinearities originating in the control design.

Due to the unknown control coefficient g in (7), we choose observer errors ei = gξ̂i − ξi, i = 1, . . . , n,

by which the following control-free error dynamics are straightforward to come by:{
ėi = ei+1 − Liaie1 − φi(t, ξ)− Liaiξ1,
ėn = − Lnane1 − φn(t, ξ)− Lnanξ1.

(11)

Let the scaled observer error be εi = ei
Li . It is then immediate from (11) to gain (ε = [ε1, . . . , εn]T)

ε̇ = LAaε− Φ(t, ξ, L)− ay −DεL̇
L
, (12)

withAa=
[
−a, [In−1,0(n−1)×1]T

]
, a=[a1, . . . , an]T, Φ(·)=[φ1(t,ξ)

L , . . . , φn(t,ξ)
Ln ]T andD=diag{1, 2, . . . , n}.

Choose ai’s such that matrix Aa is Hurwitz and there are{
AT
aP + PAa 6 −2In,

c1In 6 PD +DTP 6 c2In,
(13)

for a symmetric positive definite matrix P , and positive constants c1 and c2 meeting c1 < c2.

Remark 2. In the literature regarding observer design, observer states x̂i are required to reconstruct

system states xi as truly as possible; thus, observer error is usually defined as ei = x̂i − xi. In contrast,

observers for output-feedback control aim to dynamically compensate for the unmeasured states; thus, the

selection of observer error has more flexibility, as long as it facilitates the output-feedback control design

and analysis. Here, we pick ei = gξ̂i−ξi, rather than ei = ξ̂i−ξi. By doing so, the observer error dynamics

(11) are rendered control-free and tractable. The control-free property indicates certain separation between

the observer and the controller, which is indispensable for the observer-based controller design.

For the crucial scaled error ε argued above, we would like to unfold its stability of boundedness type

which is subtler and more tractable than a relation of the ISS type as in [11, 15, 17] in the context of

practical tracking, due to the introduction of high gain L with delicately devised dynamics (10).

Proposition 1. Let Vε=εTPε with P satisfying (13). Along trajectories of (12) and (10), there is (for

unknown θε > 0)

V̇ε 6 −3L

2
‖ε‖2 + θε, (14)

which naturally gives the boundedness of ε.

Proof. Taking the time derivative of Vε and invoking (12), we have

V̇ε = LεT(ATP + PA)ε− 2εTPΦ(t, ξ, L)− 2εTPay − εT(DTP + PD)ε
L̇

L
. (15)

By noting L̇ in (10) and L(t) > 1 and applying (8), the indefinite terms in (15) satisfy
2εTPΦ(t, ξ, L) 6 ‖ε‖2‖φ̄(y)‖2 + nθ̄2‖P‖2,
2εTPay 6 ‖ε‖2y2 + ‖Pa‖2,
−εT(DTP + PD)ε L̇L 6 δ1c2L‖ε‖2 − δ2c1

(
1 + y2 + ‖φ̄‖2

)
‖ε‖2.
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Putting the estimates into (15) and noting δ1 6 1
2c2

and δ2 > 1
c1

directly lead to (14) with θε =

nθ̄2‖P‖2 + ‖Pa‖2.

Noting the definition of Vε, we see a constant κ > 0 exists such that V̇ε 6 −κLVε + θε. Solving it

directly arrives at the boundedness of ε, whether high gain L is bounded or not.

Remark 3. Observed from estimations above, dynamic high gain L lends itself well to the counteraction

of nonlinearity “
(
y2 + ‖φ̄(·)‖2

)
‖ε‖2”. By injecting L into observer (9), the negative definite term with

factor “− L̇
L” would emerge, providing negative counterpart “−

(
1 + y2 + ‖φ̄(·)‖2

)
‖ε‖2”. This key term

directly eliminates the unwanted positive counterpart and, in turn, helps the establishment of satisfactory

tractable stability of the boundedness type rather than the ISS type.

5 Adaptive Output-feedback Controller Design

In this section, we devote ourselves to designing an adaptive controller via output feedback for system

(7) to realize global tracking with prescribed performance.

Recall that anticipated tracking performance embodies largely into the behavior of tracking error er;

thus, keeping er evolving within the designed performance boundary F(s(t)) turns into our overarching

task, as required in control objectives. To this end, we need to associate tracking error er with boundary

F(s(t)) by using special performance functions that could blow up when er approaches boundary F(s(t)).

In this direction, we introduce the critical spatiotemporal performance function

h
(
s(t), er

)
=

v(s(t), er)

1− v2(s(t), er)
, (16)

with

v(s(t), er) =
w(er)

s(t)
, w(er) =

er√
e2
r + 1

. (17)

Remark 4. The design of functions h(·), v(·) and w(·) in (16) and (17) is in effect objective-oriented.

To understand the intuitions behind them, recall that the tracking error is expected to satisfy F(−s(t)) <
er(t) < F(s(t)), which gives −s(t) < F−1(er(t)) < s(t). Observe from (4) that F−1(er) = er√

e2r+1
=:

w(er). Then, by using s(t) > 0 delineated in Section 3.4, there is |F
−1(er)|
s(t) < 1. Therefore, we let

v(t, er) := F−1(er)
s(t) = w(er)

s(t) , and the expected spatiotemporal performance function h(·), which is a

function of v(·), should blow up as |v(·)| approaches 1. In view of these, we pick h(·) as in (16), by

which ensuring er to evolve within performance boundary F(s(t)) naturally comes down to checking the

boundedness of h(·).
We now design the following adaptive output-feedback controller for system (7):u = αn(S(t), k, L, y, yr, ξ̂[n]),

k̇ = Dµ,n(h) 1+v2

(1−v2)2 · 1

s(t)(e2r+1)
3
2
ζ(s(t), L, y, yr),

(18)

where S(t) = [s(t), ṡ(t), . . . , s(n−1)(t)]T and S[i](t) = [s(t), ṡ(t), . . . , s(i−1)(t)]T.

In (18), αn(·) is generated recursively as follows:
α1(·) = N(k) · ζ(s(t), L, y, yr),

α2(·) = ρ2

(
S[2](t), k, L, y, yr, ξ̂[2]

)
,

αi(·) = ρi
(
S[i](t), k, L, y, yr, ξ̂[i−1]

)
−zi−1 +

∑i−1
j=1

∂αi−1

∂ξ̂j

˙̂
ξj , i = 3, . . . , n,

(19)

where the design function ζ(·), which belongs to Cn, is designed as

ζ(·) = sgnµ
2 ,n

(h)
(

1 + φ̄1(y) + L2 +Ms
(e2
r + 1)

3
2

s(t)

)
,

with Ms the known bound of ṡ(t) as above.
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Intermediate variables zi’s and associated functions ρi(·)’s are defined as (for i = 2, . . . , n)
zi = ξ̂i − αi−1,

ρi(·) = − 1
2zi + Liaiξ̂1 + ∂αi−1

∂L L̇+ ∂αi−1

∂k k̇ +
∑i−2
j=0

∂αi−1

∂s(j)(t)
s(j+1)(t)

− 1
4zi(

∂αi−1

∂yr
)2 − 1

4zi(
∂αi−1

∂y )2
(
ξ̂2
2 + nL3 + φ̄2

1(y)
)
.

(20)

We next intend to present two propositions which show the intuitions behind the design functions/gains

above, and which more importantly, serve the performance analysis later on.

Proposition 2. Let Vz = Vε + 1
2

∑n
j=2 z

2
i . Then there is

V̇z 6 −1

2
L‖ε‖2 − 1

2

n∑
j=2

z2
i + θz, (21)

with an unknown positive constant θz.

Proposition 3. With Dµ,n(·) and Qµ
2 ,n

(·), let Vh be

Vh =

∫ h

0

Dµ,n(τ) dτ =


1
2 (|h| − µ)2 + cλ, |h| > 3µ

2 ,∫ |h|
µ
2
Qµ

2 ,n
(τ − µ) dτ, µ

2 < |h| <
3µ
2 ,

0, |h| 6 µ
2 ,

where cλ =
∫ 3µ

2
µ
2
Qµ

2 ,n
(τ − µ) dτ − µ2

8 . Then there is

V̇h 6
(
gN(k) + θh

)
k̇ + θhk̇V

1
2
z . (22)

Proof of Proposition 2. Let Vzi = 1
2z

2
i , i = 2, . . . , n and take their time derivatives:

V̇zi = zi(
˙̂
ξi − α̇i−1) = zi

(
zi+1 + αi − Liaiξ̂1 −

∂αi−1

∂k
k̇ − ∂αi−1

∂L
L̇−

i−1∑
j=1

∂αi−1

∂ξ̂j

˙̂
ξj

−
i−2∑
j=0

∂αi−1

∂s(j)(t)
s(j+1)(t)

)
− zi

∂αi−1

∂y
ẏ − zi

∂αi−1

∂yr
ẏr. (23)

All the terms in the brackets in (23) are available and, hence, can be precisely eliminated by the virtual

controller αi(·) without further estimates. We thus just have to estimate the last two terms in (23). Now,

recall that ẏ = ξ2 + φ1(y) = gξ̂2 − L2ε2 + φ1(y). Then, by using |φ1(y)| 6 θ̄φ̄1(y) and |ẏr| 6Mr, we can

learn (using completing the square)
zi
∂αi−1

∂y ẏ = zi
∂αi−1

∂y

(
gξ̂2 − L2ε2 + φ1(y)

)
6 L

n‖ε‖
2+ 1

4z
2
i

(
ξ̂2
2 +nL3+φ̄2

1(y)
)
(∂αi−1

∂y )2+g2+θ̄2,

zi
∂αi−1

∂yr
ẏr 6 1

4z
2
i (∂αi−1

∂yr
)2 +M2

r .

Putting this and αi(·) into (23) directly arrives at, for i = 2, . . . , n

V̇zi 6
L

n
‖ε‖2 − zi−1zi + zizi+1 −

1

2
z2
i + g2 + θ̄2 +M2

r .

From this and V̇ε in (14), we see (by noting z1 = 0 and zn+1 = 0) that (21) holds with θz = (n− 1)(g2 +

θ̄2 +M2
r ) + θε.

Proof of Proposition 3. Computing V̇h and noting the definition of h(·) in (16), we find

V̇h = Dµ,n(h)ḣ = Dµ,n(h)
1 + v2

(1− v2)2
· 1

s(t)(e2
r + 1)

3
2

(
gα1 + gz2 − L2ε2

+φ1(y)− ẏr
)

+Dµ,n(h)
1 + v2

(1− v2)2
· w(er)ṡ(t)

s2(t)
. (24)

Recall from (10) and Proposition 2 that L(t) > 1 and Vz > λmin(P )ε2
2 + 1

2z
2
2 with λmin(P ) the

minimum eigenvalue of matrix P . It is then clear that gz2 − L2ε2 6 L2(1 + |g|)(|z2| + |ε2|) 6 θ̄hL
2V

1
2
z
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for θ̄h = (1 + |g|)(
√

2 + 1√
λmin(P )

). This, together with the sufficient smoothness of |Dµ,n(h)|, indicates

that the indefinite term “Dµ,n(h) 1+v2

(1−v2)2 · (gz2−L2ε2)

s(t)(e2r+1)
3
2

” (denoted by 1© below) in (24) satisfies

1© 6 |Dµ,n(h)| 1 + v2

(1− v2)2
· θ̄hL

2V
1
2
z

s(t)(e2
r + 1)

3
2

.

Now, notice that |φ1(y)| 6 θ̄φ̄1(y) in (8), |ẏr| 6Mr in Assumption 2, w(er) < 1 in (17) and |ṡ(t)| 6Ms

in Item (iii)(iii)(iii) below (4). It immediately follows that (by taking the absolute values)
Dµ,n(h) 1+v2

(1−v2)2 · 1

s(t)(e2r+1)
3
2

(
φ1(y)− ẏr

)
6 max{θ̄, Mr}|Dµ,n(h)| 1+v2

(1−v2)2 · 1+φ̄1(y)

s(t)(e2r+1)
3
2
,

Dµ,n(h) 1+v2

(1−v2)2 · w(er)ṡ(t)
s2(t) 6 |Dµ,n(h)| 1+v2

(1−v2)2 · Ms

s2(t) .

Plugging the above estimates, all Cn, and virtual controller α1(·) (see (19)) into (24) and recalling

dynamics k̇ in (18) directly arrive at (22) with θh = max{1, θ̄, Mr, θ̄h}.
Remark 5. Observe from Lemma 4 that both Dµ,n(h) and |Dµ,n(h)| are of sufficient smoothness, as

shown in Figure 2. Benefiting from this key nature, the indefinite terms in (24) can be estimated by

simply taking their absolute values. Naturally, this reduces the use of completing the square, which could

intuitively result in a less conservative controller.

The concise estimates in the proofs above, compared with the counterpart in [11], should be attributed

to the use of dynamic high gain L. In detail, with L at hand, in V̇ε we are able to cancel all unwanted

highly nonlinear terms, instead of leaving them to the virtual controller α1 in V̇h, as done in [11]. This

and the boundedness of the observer error ε realize the “separation” concerning ε and zi’s, and allow us

to estimate the quadratic terms “ 1
2z

2
i ” in Vz separately.

On the other side, with the estimates on V̇z and V̇h, these two Lyapunov function candidates are

qualified to unfold the anticipated tracking performance and no other candidate is required additionally.

Therefore, this not only makes plain the foregoing control design, but saves a lot of effort in analysis

(above and below).

6 Stability and Performance Analysis

This section establishes the boundedness of all states of the closed-loop system and unfolds how the

prescribed performance is achieved at length.

Theorem 1. For the uncertain nonlinear system (7) under Assumptions 1 and 2, adaptive output-

feedback controller (18) guarantees that for any initial data ξ0 ∈ Rn, all states of the resulting closed-loop

system (i.e., ξ(t), ξ̂(t), k(t), L(t)) are well-defined and bounded on [0, +∞). Furthermore, the tracking

error evolves within the prescribed performance boundary F(s(t)). Particularly, for given times Tλ̄ and

Tλ (0 < Tλ̄ < Tλ), the tracking error decreases to a moderately low level λ̄ at Tλ̄, while at Tλ, it reaches

the anticipated tracking accuracy λ (λ<λ̄), i.e., it stays inside the prescribed strip [−λ, λ] after Tλ.

Proof. With the above-designed adaptive controller, from system (7) and dynamic-high-gain observer

(9), it can be seen that the vector field of the resulting closed-loop system is continuous in t and locally

Lipschitz in
(
ξ, ξ̂, k(t), L(t)

)
in an open neighborhood of the initial data. Thus, the closed-loop system

has a unique solution on a small interval [0, ts) (see Theorem 3.1, page 18 of [31]). Let [0, tf ) where

0 < tf < +∞ or tf = +∞ be the maximal existence interval on which the unique solution exists (see

Theorem 2.1, page 17 of [31]). When 0 < tf < +∞, it means limt→tf
(
‖ξ(t)‖+‖ξ̂(t)‖+k(t)+L(t)

)
= +∞.

When tf = +∞, all closed-loop system states are well-defined on [0, +∞).

From (21) we see there exists a constant C > 0 such that on [0, tf )

V̇z 6 −CVz + θz,

which directly shows the boundedness of Vz on [0, tf ). Denote one of its upper bounds as V ∗z . Recalling

(22) in Proposition 3, we can immediately have
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V̇h 6
(
gN(k) + θh + θhV

∗ 1
2

z

)
k̇.

Then, by applying Lemma 5, we gain the boundedness of k(t), Vh as well as
∫ t

0

(
gN(k(τ)) + θh +

θhV
∗
z

)
k̇(τ) dτ , all on [0, tf ).

According to the definition of Vh, we see the boundedness of h implies from (16) and (17) that

|v(t, er)| = |w(er)
s(t) | < 1. From this and s(t) > 0, we see

−s(t) < w(er) < s(t), ∀t ∈ [0, tf ). (25)

Noting the increasing property of F(s(t)) with respect to s(t) and the fact that F(w(er)) = er, we can

obtain from (25)
F(−s(t)) < er < F(s(t)), ∀t ∈ (0, tf ).

Since we have shown a small interval [0, ts) exists on which the closed-loop system runs, we see that

er is bounded on [0, ts). Then, on [ts, tf ), recalling that F(s(t)) < +∞ and that er(t) always evolves

within the prescribed boundary F(·) (indicated by |er| < F(s(t)) given above), we have the boundedness

of er(t) on [ts, tf ). Therefore, we arrive at its boundedness on [0, tf ).

By the definition and boundedness of Vz, we know ε, zi’s are all bounded. With er proven bounded

above, we can see, from bounded yr in Assumption 2, the boundedness of y, which implies that L defined

in (10) is also bounded. By (19) and (20), we readily come by the boundedness of ξ̂. As a result, all of

the closed-loop signals are bounded and hence tf = +∞.

Now, we turn to show the prescribed performance. For this purpose, besides keeping er evolving within

the performance boundary F(s(t)) on [0, +∞), it remains to show: i)i)i) after the prescribed transient stage

(i.e., [0, Tλ̄]), the tracking error er would decrease to an anticipated moderately low level λ̄; ii)ii)ii) after the

prescribed time Tλ practical tracking performance is achieved.

To see i)i)i), from the decreasing property of F(s(t)) with respect to t, we have F(s(t)) < F(s(Tλ̄)) =

λ̄, ∀t ∈ [Tλ̄, +∞). Because |er| < F(s(t)), we see that er is squeezed into a low-level strip [−λ̄, λ̄] after

Tλ̄.

As for ii)ii)ii), owing to the evolution of er within F(s(t)), the fulfillment of the tracking accuracy boils

down to the verification of er entering into the strip [−λ, λ] at the prescribed time Tλ. To this end,

similar to item i)i)i), recall that s(t) = s(Tλ) = λ√
1+λ

, ∀t > Tλ. Putting this into (4), we see F(s(t)) =

F(s(Tλ)) = λ, ∀t ∈ [Tλ, +∞). Since there is |er(t)| < F(s(t)), ∀t ∈ [Tλ, +∞) ⊂ [0, +∞), we know

|er| < λ at Tλ, and thereafter it will stay therein forever and hence practical tracking performance is

achieved.

Remark 6. Observed from the performance analysis, the tracking error er always evolves within the

boundary F(s(t)). Note that F(s(t)) is strictly decreasing in t during the transient stage [0, Tλ̄) and the

low-level ensured stage [Tλ̄, Tλ) (see Figure 3 above). Thus, the convergence rate of F(s(t)), which can

be an exponential rate or others by picking s(t), is viewed as the convergence rate of tracking error er.

In particular, since F(s(t)) is constructed by piecing together the multiple functions (see Figure 3), the

tracking error er can have different convergence rates during its different evolution stages.

7 A Simulation Example

Consider the Josephson junction circuit as follows:

m1ÿ +m2ẏ +m3 sin y = u, (26)

where mi’s are unknown nonzero parameters, and y is the only measurable quantity.

Now, transform system (26) into (1) by letting x1 = y and x2 = m1m2ẏ + m2
2y. Applying the linear

transformation (6), we gather unknown control coefficients together and arrive at the 2-order version of

system (7) with φ1(y) = −m2

m2
y and φ2(y) = −m2m3 sin y. Apparently, growth condition (8) holds with

φ̄1(y) =
√
y2 + 0.025 and φ̄2(y) =

√
sin2 y + 0.025.

Devise the 2-order observer in the form of (9) with [a1, a2]T = [ 3, 2 ]T. With the φ̄i(y)’s in hand, we

design dynamic high gain L as in (10) with δ1 = 5
6 , δ2 = 2 and correspondingly, ‖φ̄(·)‖2 = y2 + sin2(y) +
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0.05. Let the dynamics of the high gain k as in (18) where D1,2(h) is with Q 1
2 ,2

(h) = − 1
2h

4+ 3
4h

2+ 1
2h−

3
32 ,

associated sgn 1
2 ,2

(h) is with P2(h) = 12h5 − 10h3 + 15
4 h, and N(k) = k2 cos(k).

Set yr = 4
5 sin t

2 , λ̄ = 0.3, λ = 0.2, Tλ̄ = 4 and Tλ = 5. Then, s(t) as in (5) is with Q 0.5,2(−t+ 4.5) =

− 146
6311 t

4 + 567
1402 t

3 − 1942
841 t

2 + 1177
261 and accordingly we pick its upper bound Ms = 1.5.

Based on the high gains and design functions above, we can derive the adaptive controller in the form

of (18) by following the proposed control scheme.

To show the proposed scheme lends itself well to shaping the tracking error evolution, we provide

a contrast simulation that does not consider transient performance guarantee under the same initial

conditions. Select the same observer, high gain L and the associated parameters as above. Without

taking the transient behavior of er into account, the virtual controller α1(·) becomes α1 = N(k)ζ(·) with

ζ(·) = sgn 1
2 ,2

(er)
(
1 + φ̄1(y) + L2

)
, controller u = ρ2(·) as in (20) but with ∂α1

∂s(t) ṡ(t) = 0, and the high

gain k can reduce to k̇ = D1,2(er)ζ(L, y, yr).

Now let m1 = −4, m2 = 1, m3 = −4, and choose the initial conditions x1(0) = 0.8, x2(0) = −1,

ξ̂1(0) = 3, ξ̂2(0) = 2, L(0) = 1 and k(0) = 0.1.

Simulation results with guaranteed performance are depicted in Figure 4, while the contrast simulation

results are in Figure 5. Although both schemes can ensure bounded (x, ξ̂, L, k) and the ultimate tracking

accuracy, only the proposed scheme confines tracking error er to evolving within the prescribed boundary

F(s(t)) all the time (see Figure 4), which shows the effectiveness of the proposed scheme. Particularly,

in Figure 4, er decreases to the level [−0.3, 0.3] before the 4th second and enters into the strip [−0.2, 0.2]

very quickly, demonstrating achievement of the expected performance.

Figure 4 System evolution under proposed guaranteed-performance controller.

Figure 5 System evolution under the controller without performance guarantee.

8 Concluding Remarks

In this paper, we have addressed global output-feedback tracking with arbitrarily prescribed performance

for uncertain nonlinear systems. A new adaptive strategy has been put forward where powerful dynamic

high gains are leveraged to handle the high nonlinearities and essential uncertainties as well. Since the

prescribed performance, characterized in both temporal and spatial aspects, manifests itself in the behav-

ior of the tracking error, a boundary which is built upon spatiotemporal functions has been established to

shape it. Notwithstanding, the systems in question are confined to output-feedback-like form. Though we

have additionally allowed for unknown control directions, there are more other practical ingredients and

implementation realization also worth considering, such as arbitrary relative degree and event-triggered

control [2, 24, 26]. Moreover, the systems that can delineate the essence of output feedback in a more

generic way, for instance, systems with unmeasured-state-dependent growth [16,19,32], are also intriguing

and challenging when considered with prescribed-performance objectives, which deserves further investi-

gation.
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