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Summary
The connectivity of communication graph is indispensable for consensus of
multi-agent systems (MASs), which in many applications (e.g., wireless sensor)
depends on the relative distances between agents. But, in the adaptive setting
particularly with system nonlinearities and event-triggered communication, it
is rather difficult to enforce the relative distances within the limited range for
the connectivity. This paper focuses on developing an adaptive event-triggered
control strategy with connectivity preservation in the context of nonidentical
unknown control coefficients and heterogeneous nonlinearities coupling with
parameter uncertainties. First, a group of potential functions are introduced act-
ing as control barrier functions to constrain the relative distances between agents
within the limited range for all time. Also, two dynamic gains are specialized for
each agent to handle the system uncertainties, system nonlinearities and neg-
ative effect of the execution error. Then, an adaptive event-triggered protocol
is designed for each agent such that the connectivity-preserving consensus of
MASs is achieved and Zeno behavior is excluded. Moreover, an extended study
is conducted on a leader-following scenario. Two simulation examples illustrate
the effectiveness of the proposed event-triggered control strategy.
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1 INTRODUCTION

Consensus of MASs has been extensively studied for which an indispensable condition is the connectivity of commu-
nication graph.1–12 In many real-life MASs, such as mobile wireless sensors13 and multiple aircraft,14 the connectivity
essentially depends on the relative distances between agents. If the distances exceed a certain range, the connec-
tivity will no longer preserve and thus consensus can not be achieved. A lot of results15–26 have been obtained on
connectivity-preserving consensus of MASs, while only a few21,24 allow for uncertainties and the control coefficients
therein are known. Actually, in the adaptive setting, enforcing the relative distances within the limited range is difficult
for the connectivity.

With the increasing popularity of networked control and distributed architecture, it is necessary to reduce the occu-
pation of shared resources as much as possible. Event-triggered control has obvious advantages in saving communication
and computation resources over time-triggered one, which has been experimentally validated in works.27,28 Concern-
ing the topic, many results have been gained (see e.g., References 29–34). Works in References 29,30 and 31 respectively
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addressed the single-integrator MASs and double-integrator ones. As extensions of these three preceding works, work32

studied general linear MASs, while work33 admitted external disturbances for such general systems. Work34 further
allowed unknown control coefficients and system nonlinearities coupling with parameter uncertainties. Nevertheless,
works29–34 didn’t involve connectivity preservation. For uncertain nonlinear MASs, event-triggered consensus problem
with connectivity preservation becomes rather more challenging partly because the sampling/execution error is dif-
ficult to be accurately bounded. Despite some progress (see e.g., References 35–41), there has been no any adaptive
event-triggered control strategy to handle nonidentical unknown control coefficients and heterogeneous nonlinearities
coupling with parameter uncertainties. Therefore, it is urgent to pursue a powerful design strategy where suitable com-
pensation and connectivity-preserving mechanisms should be introduced and an event-triggering mechanism is properly
integrated with the previous two mechanisms to achieve connectivity-preserving consensus.

This paper aims to develop an adaptive event-triggered strategy to achieve connectivity-preserving consensus for a
class of uncertain nonlinear MASs. To this end, a group of potential functions acting as control barrier functions (see
e.g., References 15,18,19,24,42) are adopted. When the relative distances between any two neighboring agents approach
communication radius, the corresponding potential functions would tend to infinity, which enables the control protocols
to ensure the relative distances within the radius for all time. Notably, the weight coefficients induced from these potential
functions (i.e., (3) below) are strictly increasing with respect to the relative distances. By virtue of the increasing property,
the boundedness of the weight coefficients can be obtained once the relative distances are bounded, which is helpful in
deriving the boundedness of all the closed-loop signals (see the proof of Proposition 2 below). Also, two dynamic gains
are introduced for each agent to compensate the system uncertainties, suppress the nonlinearities and overcome the
negative effect of the execution error. Then, an adaptive event-triggered control protocol is designed for each agent such
that the connectivity of initial communication graph is maintained for all time and the consensus of MASs is achieved.
Particularly, a positive lower bound for the inter-execution intervals is ensured to exclude Zeno behavior. Moreover, the
developed event-triggered strategy is also extended to a leader-following scenario.

In detail, the main contributions of this paper consist of two aspects: (i) The studied systems in the
connectivity-preserving framework are much more general than the existing works.15,17–19,21 Nonidentical unknown con-
trol coefficients and heterogeneous nonlinearities coupling with parameter uncertainties are allowed simultaneously,
while works15,17–19,21 excluded unknown control coefficients and particularly works15,17 only investigated linear MASs.
(ii) The proposed adaptive event-triggered control strategy not only achieves asymptotic consensus of MASs but also
guarantees the connectivity preservation. This is because both dynamic gains and potential functions are incorporated
into the event-triggering mechanism. Whereas works34,43,44 merely introduced dynamic gains and thus didn’t achieve
connectivity preservation.

The rest of this paper is organized as follows. Section 2 gives preliminaries and problem formulation. Section 3
presents an adaptive event-triggered connectivity-preserving consensus protocol, and the main results are summarized in
Section 4. Section 5 extends the adaptive event-triggered connectivity-preserving strategy to a leader-following scenario.
Two simulation examples and concluding remarks are provided in Sections 6 and 7, respectively.

2 PRELIMINARIES AND PROBLEM FORMULATION

2.1 Notations and graph theory

Let 1N denote the N-dimensional column vector whose elements are all equal to 1, IN the identity matrix with dimension
N, and diag{x1, … , xN} the N-dimensional diagonal matrix with diagonal elements xi’s. For a real number x, sign(x)
denotes its sign function, that is, sign(x) = 1 if x > 0, sign(x) = 0 if x = 0, and sign(x) = −1 if x < 0. For a scalar function
f (s), we use D+f (s) to denote the upper Dini derivative of f (s), and denote it by f (⋅) or f for convenience when no confusion
occurs.

For a weighted undirected graph  = ( ,  ,) with N nodes,  = {1, … ,N} denotes the set of nodes,  ⊆  × 
represents the set of edges and = (𝜔ij)N×N stands for the weighted adjacency matrix. (i, j) ∈  means that there exists
an edge between nodes i and j and also implies that node j is the neighbor of node i and vice versa. If (i, j) ∈  , then
𝜔ij > 0, otherwise,𝜔ij = 0.i = {j ∈  ∶ (j, i) ∈ } is used to represent all the neighbors of node i. m is used to denote the
number of edges in graph  and these edges are labeled as e1, … , em. Let W = diag{w(e1), … ,w(em)}, where w(ek) = 𝜔ij
with ek being the label of edge (i, j). After assigning a direction to each edge, the n ×m incidence matrix D = (dij)n×m
is defined as: When node i is the tail of edge ej, dij = −1; when node i is the head of edge ej, dij = 1; otherwise, dij = 0.
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𝜔

denotes the edge Laplacian matrix and 
𝜔
= DWDT. Assume that graph  does not contain self-loops.  denotes the

Laplacian matrix of graph  and its elements are defined as follows: lij = −𝜔ij if i ≠ j; lij =
∑N

j≠i𝜔ij if i = j. A path of length
k connecting nodes i and j is an ordered sequence of edges: (i0, i1), (i1, i2), … , (ik−1, ik), where i0 = i, ik = j, (im, im+1) ∈  ,
0 ≤ m ≤ k − 1. A graph  is connected if there exists a path between any two different nodes.

The following lemma is presented, which will be used frequently in the later development.

Lemma 1 (38). Let KN = IN − 1
N

1N1T
N and suppose  is connected. Then KN𝜔 = 𝜔 and 0 ≤ 𝜆2KN ≤ DDT,

where 𝜆2 is the minimum positive eigenvalue for matrix DDT.

2.2 Systems and control objective

This paper studies the connectivity-preserving consensus via adaptive event-triggered control for a class of uncertain
nonlinear MASs consisting of N agents. The dynamics of agent i, i ∈  is in the form below:

{
ẋi = vi,

v̇i = giui + 𝜙T
i (vi)𝜃i,

(1)

where xi ∈ R and vi ∈ R are the system states; ui ∈ R is the control input; 𝜙i(vi) ∈ Rqi is a known continuously differ-
entiable function; gi, called the control coefficient, is an unknown nonzero constant with a known sign; 𝜃i ∈ Rqi is an
unknown constant parameter vector. Actually, various actual plants, such as spacecraft45 and surface vessels,46 can be
covered by system (1).

In this paper, since the communication range of each agent is limited, edge between agents i and j is formed if |xi −
xj| < r, that is,  = {(i, j) ∈  ×  ∶ |xi − xj| < r}, where r is the communication radius. Note that we do not consider the
generation of new communication link.

For consensus of MASs, its process contains transient and steady-state stages. In the steady-state stage, the relative
distances between any two neighboring or non-neighboring agents are maintained within the limited range. Whereas,
in the transient stage, despite small initial relative distances, due to severe uncertainties and nonlinearities, the relative
distances could exceed the radius r as multi-agents evolve. This requires control protocols to put special effort into keeping
the relative distances within the radius r.

In detail, the control objective for system (1) is to develop an adaptive event-triggered strategy such that the consensus
of MASs and connectivity preservation are achieved and sampling/execution is reduced. To achieve the desired objective,
the following assumption is imposed on an initial communication graph, which is clearly basic and common in the related
works (see e.g., References 15–25 and references therein).

Assumption 1. The initial communication graph among N agents is connected, that is, |xi(0) − xj(0)| < r for
any two neighboring agents i and j.

Based on Assumption 1, we try to design a suitable control protocol for each agent to ensure that the relative dis-
tances between any two initially neighboring agents are maintained within the radius r for all time, thereby making the
connectivity-preserving consensus of system (1) possible. Notably, for system (1) with Assumption 1, its variants have been
investigated.15,17–19,21 To be specific, work15 considered agents with single-integrator dynamics. Subsequently, work17 was
concerned with double-integrator dynamics. As extensions, work18 studied second-order MASs whose nonlinearities are
homogeneous and satisfy a Lipschitz-like condition, while work19 took heterogeneous nonlinearities into account and the
differences between any two agents’ nonlinearities therein are bounded. Work21 further considered heterogeneous non-
linearities coupling with parameter uncertainties. Nevertheless, in the works,15,17–19,21 the unknown control coefficients
and particularly event-triggered communication are excluded.

3 ADAPTIVE EVENT-TRIGGERED CONTROL DESIGN

This section pursues an adaptive event-triggered protocol for system (1) under Assumption 1 to achieve
connectivity-preserving consensus. First, a group of potential functions are given to constrain the relative distances
between agents within the radius r. Moreover, two dynamic gains are introduced for each agent to handle the system
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4 GUO and LIU

uncertainties and the nonlinearities while overcoming the negative effect of the execution error. Particularly, the
proposed event-triggering mechanism is in a fully distributed form, that is, the triggering mechanisms of any two agents
are mutually independent.

In what follows, a group of potential functions are constructed for any i, j ∈  :

Pij(|xi − xj|) =
⎧
⎪
⎨
⎪
⎩

(xi−xj)2

r−|xi−xj|
, (i, j) ∈  ,

0, (i, j) ∉  .
(2)

From this, we derive that 𝜕Pij(|xi−xj|)
𝜕xi

= 2r−|xi−xj|

(r−|xi−xj|)2
(xi − xj) when (i, j) ∈  , 𝜕Pij(|xi−xj|)

𝜕xi
= 0 otherwise. For convenience, denote

by 𝜔ij(|xi − xj|) the weight coefficient of the partial derivative of Pij(|xi − xj|) with respect to xi. Then, we have

𝜔ij(|xi − xj|) =
⎧
⎪
⎨
⎪
⎩

2r−|xi−xj|

(r−|xi−xj|)2
, (i, j) ∈  ,

0, (i, j) ∉  .
(3)

From (2) and (3), we know that Pij(|xi − xj|) and 𝜔ij(|xi − xj|) enjoy certain nice properties. Detailedly, for any
(i, j) ∈  , Pij(|xi − xj|) is positive definite and radially unbounded, that is, Pij(0) = 0, Pij(|xi − xj|) > 0, ∀|xi − xj| ≠ 0 and
lim|xi−xj|→r Pij(|xi − xj|) = +∞. This implies that Pij(|xi − xj|) acts as a control barrier function. Besides,𝜔ij(|xi − xj|) as well
as its derivatives of all orders is strictly increasing, by which the boundedness of all the closed-loop signals can be derived
once the relative distances between any two neighboring agents are bounded (see the proof of Proposition 2 later). In
the later development, for brevity, we denote Pij(|xi − xj|) and 𝜔ij(|xi − xj|) by Pij(t) and 𝜔ij(t) (or Pij and 𝜔ij), respectively,
when no confusion arises.

We then propose the adaptive event-triggered protocol of the form below for any i ∈  :

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

ui(t) = −�̂�i
(

ti
k

)( 3
2

zi
(

ti
k

)
+ 𝜙T

i

(
vi
(

ti
k

))
̂
𝜃i
(

ti
k

)
− D+

𝛼i
(

ti
k

))
, ∀t ∈

[
ti
k, ti

k+1

)
,

𝛼i(t) = −
∑

j∈i

𝜔ij(|xi(t) − xj(t)|)(xi(t) − xj(t)),

̇
̂
𝜃i = 𝜙i(vi)zi, zi = vi − 𝛼i,

̇
�̂�i = sign(gi)zi

(
3
2

zi + 𝜙T
i (vi) ̂𝜃i − D+

𝛼i

)
,

(4)

where ti
k’s are the sampling times of (zi, vi, ̂𝜃i, �̂�i, xi − xj) (or the execution times of ui) for agent i.

In (4), �̂�i and ̂
𝜃i, called the adaptive dynamic gains of agent i, are used to estimate 1

gi
and 𝜃i, respectively, where gi and

𝜃i are the uncertainties in system (1). In fact, the introduction of �̂�i avoids zero division since directly estimating gi leads to
that the reciprocal of such an estimate appears in the control protocol. By leveraging the local interaction between agents,
the unknown control coefficients, the nonlinearities coupling with parameter uncertainties and the negative effect of the
execution error can be effectively handled by the two dynamic gains.

Moreover, for agent i, i ∈  , the execution error is defined as:

ei(t) = ui(t) + �̂�i(t)
(3

2
zi(t) + 𝜙T

i (vi(t)) ̂𝜃i(t) − D+
𝛼i(t)

)
, ∀t ∈

[
ti
k, ti

k+1

)
. (5)

Based on this, ti
k’s (ti

1 = 0) are online generated by the following event-triggering mechanism:

ti
k = inf

{
t > ti

k−1
|
|
|
|ei(t)| ≥ 𝜂i(t)

}
, (6)

where “|ei(t)| ≥ 𝜂i(t)” is referred to as the Event, and 𝜂i(t) > 0 is a square integrable continuous function and satisfies
limt→+∞ 𝜂i(t) = 0. Actually, the threshold function 𝜂i(t) which fits the requirements is common, such as 𝜂i(t) = 1

√
1+t2

and
𝜂i(t) = e−t.

Remark that the introduction of 𝜂i(t) in (6) aims to provide a positive lower bound for the inter-execution inter-
vals (see the proof of Theorem 1 later) and thereby guarantee the implementability of event-triggered control protocol

 10991239, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7169 by Shandong U

niversity L
ibrary, W

iley O
nline L

ibrary on [02/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



GUO and LIU 5

(4). However, we know from (6) that the initial value and the convergence speed of 𝜂i(t) would affect the frequency
of samping/execution. To further reduce the control updating, the refined selection of function 𝜂i(t) is crucial. For
example, under the same initial value, choosing 𝜂i(t)with slower convergence speed would be more conducive to resource
conservation.

From (4), (5) and (6), we can see that for agent i, i ∈  , the generation of {ti
k} is independent of the other agents’

triggering times, which means that the proposed event-triggering mechanism follows a fully distributed way and decides
asynchronous samplings and executions. Moreover, the Event in (6) incorporates the dynamic gains (i.e., �̂�i and ̂

𝜃i in (4)),
which enables the developed adaptive event-triggered strategy to handle the nonidentical unknown control coefficients,
the heterogeneous nonlinearities coupling with parameter uncertainties and the negative effect of the execution error.
Thus, the investigated systems are more general than those in the related works.15,17–19,21 Besides dynamic gains, the
weight coefficients (i.e., 𝜔ij’s in (3)) induced from potential functions are also incorporated the triggering mechanism,
which makes the developed event-triggered strategy guarantee the connectivity preservation of initial communication
graph.

The following proposition, whose proof detailedly shows the derivation process of adaptive control protocol, char-
acterizes the integral input-to-state stable property of the closed-loop system with respect to inputs 𝜂i’s via a Lyapunov
argument.

Proposition 1. For system (1) satisfying Assumption 1, the adaptive event-triggered protocol (4)
with i ∈  , under the event-triggering mechanism (6), makes the Lyapunov function V = 1

2

∑N
i=1(∑

j∈i
Pij + z2

i + |gi|�̃�2
i + ̃

𝜃

T
i ̃𝜃i

)
satisfy

D+V(t) ≤ −1
2

N∑

i=1

⎛
⎜
⎜
⎝

∑

j∈i

𝜔ij(t)
(

xi(t) − xj(t)
)⎞
⎟
⎟
⎠

2

−
N∑

i=1

z2
i (t)
2

+ g
N∑

i=1
𝜂

2
i (t), t ∈

[
ti
k, ti

k+1

)
, (7)

where �̃�i = 𝜌i − �̂�i, 𝜌i = 1
gi

, ̃𝜃i = 𝜃i − ̂
𝜃i, and g is an unknown positive constant.

Proof. We carry out the proof in two steps. First, choose V1 = 1
2

∑N
i=1

∑
j∈i

Pij as the Lyapunov function
candidate. Then, invoking (2) and (3), and noting ẋi = vi, we derive

D+V1 =
N∑

i=1

∑

j∈i

𝜔ij(xi − xj)vi =
N∑

i=1

∑

j∈i

𝜔ij(xi − xj)𝛼i +
N∑

i=1

∑

j∈i

𝜔ij(xi − xj)(vi − 𝛼i),

which, together with (4), yields

D+V1 = −
N∑

i=1

⎛
⎜
⎜
⎝

∑

j∈i

𝜔ij(xi − xj)
⎞
⎟
⎟
⎠

2

+
N∑

i=1

∑

j∈i

𝜔ij(xi − xj)zi ≤ −
1
2

N∑

i=1

⎛
⎜
⎜
⎝

∑

j∈i

𝜔ij(xi − xj)
⎞
⎟
⎟
⎠

2

+
N∑

i=1

z2
i

2
. (8)

Second, let V = V1 + 1
2

∑N
i=1

(
z2

i + |gi|�̃�2
i + ̃

𝜃

T
i ̃𝜃i

)
. Then, by (1), (4) and (8), noting �̂�i =

1
gi
− �̃�i and the

definition of the execution error ei in (5), we obtain

D+V ≤ −1
2

N∑

i=1

⎛
⎜
⎜
⎝

∑

j∈i

𝜔ij(xi − xj)
⎞
⎟
⎟
⎠

2

+
N∑

i=1

z2
i

2
+

N∑

i=1

(
zi
(

giui + 𝜙T
i (vi)𝜃i − D+

𝛼i
)
− |gi|�̃�i ̇�̂�i − ̃

𝜃

T
i
̇
̂
𝜃i

)

= −1
2

N∑

i=1

⎛
⎜
⎜
⎝

∑

j∈i

𝜔ij(xi − xj)
⎞
⎟
⎟
⎠

2

−
N∑

i=1
z2

i −
N∑

i=1
gi�̂�izi

(
𝜙

T
i (vi) ̂𝜃i − D+

𝛼i
)

+
N∑

i=1

(
zi(𝜙T

i (vi)𝜃i − D+
𝛼i) − |gi|�̃�i ̇�̂�i − ̃

𝜃

T
i
̇
̂
𝜃i

)
+

N∑

i=1
giziei
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6 GUO and LIU

= −1
2

N∑

i=1

⎛
⎜
⎜
⎝

∑

j∈i

𝜔ij(xi − xj)
⎞
⎟
⎟
⎠

2

−
N∑

i=1
z2

i +
N∑

i=1
giziei +

N∑

i=1
(𝜃i − ̂

𝜃i)T
(
𝜙i(vi)zi − ̇

̂
𝜃i

)

+
N∑

i=1

(
gi�̃�izi

(3
2

zi + 𝜙T
i (vi) ̂𝜃i − D+

𝛼i

)
− |gi|�̃�i ̇�̂�i

)
.

Also, from the triggering mechanism (see (6)), it follows that |ei(t)| ≤ 𝜂i(t), ∀t ∈
[
ti
k, t

i
k+1

)
. Then, by the def-

initions of ̇
̂
𝜃i and ̇

�̂�i in (4), and using the method of completing the square, we gain for any t ∈
[
ti
k, t

i
k+1

)
,

D+V(t) ≤ −1
2

N∑

i=1

⎛
⎜
⎜
⎝

∑

j∈i

𝜔ij(t)
(

xi(t) − xj(t)
)⎞
⎟
⎟
⎠

2

−
N∑

i=1

z2
i (t)
2

+
N∑

i=1

g2
i 𝜂

2
i (t)
2

,

which means that (7) holds. ▪

Remark 1. It is worth pointing out that the developed adaptive event-triggered consensus strategy can ensure
the collision avoidance between neighboring agents by slightly modifying the Lyapunov function V in Propo-
sition 1. Specifically, similar to (2), a group of potential functions are introduced to avoid the collision between
agents for any i, j ∈  = {1, … ,N}:

Qij(|xi − xj|) =
⎧
⎪
⎨
⎪
⎩

1
(xi−xj)2−(r∗)2

, (i, j) ∈  ,

0, (i, j) ∉  ,
(9)

where r∗ is the critical value of collision between agents and satisfies 0 < r∗ < r, with r being the communica-
tion radius defined in Subsection 2.2. From (9), we see that lim|xi−xj|→r∗ Qij

(
|xi − xj|

)
= ∞, which means that

Qij(|xi − xj|) acts as a control barrier function. To ensure collision avoidance and connectivity preservation
simultaneously, redefine the edge set  = {(i, j) ∈  ×  ∶ r∗ < |xi − xj| < r}. Moreover, in Proposition 1 and
its proof, the potential function Pij is replaced by Qij + Pij. As such, an inequality similar to (7) is gained, by
which and adopting the performance analysis similar to that in Section 4, collision avoidance and connectivity
preservation of system (1) are achieved.

4 MAIN RESULTS

This section addresses the main results of this paper. To be specific, the connectivity preservation of initial communica-
tion graph is ensured while the consensus of MASs (1) is achieved. Besides, Zeno behavior of the closed-loop system is
excluded.

From (1) and (4), we see that on any inter-execution interval
[

ti
k, ti

k+1

)
(i ∈ ), the vector field of the resulting

closed-loop system is locally Lipschitz in (xi, vi, �̂�i, ̂𝜃i) and continuous in ui. By the theorem of existence and unique-
ness of solutions and the continuation theorem (see e.g., theorem 3.1 on p. 18 and theorem 2.1 on p. 17 in work47),
differential Equations (1) and (4) with ui(t) ≡ ui(ti

1) have a unique solution
(

xi(t), vi(t), �̂�i(t), ̂𝜃i(t)
)

on the maximal
existence interval

[
ti
1, Ti

e1

)
. When the Event in (6) happens on

[
ti
1, Ti

e1

)
, in the light of the event-triggering mecha-

nism, the triggering time ti
2 is generated on

[
ti
1, Ti

e1

)
. Take

(
xi(ti

2), vi(ti
2), �̂�i(ti

2), ̂𝜃i(ti
2)
)

as a new initial value. Similarly,
we can obtain that the solution of the above differential equations with ui(t) ≡ ui

(
ti
2
)

exists and is unique on the
maximal existence interval

[
ti
2, Ti

e2

)
. This procedure would be repeated again if the next triggering time is gener-

ated. Therefore, the resulting closed-loop system has a unique solution on its maximal existence interval [0, Te) with
0 < Te ≤ +∞.

Before presenting the main theorem, the following key proposition is given, which shows the role of connectivity
preservation in consensus achievement. The proof of the proposition will be provided later.
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GUO and LIU 7

Proposition 2. If the connectivity of initial communication graph is preserved on [0, +∞), the consensus of
MASs (1) is achieved, that is, for any i, j = 1, … ,N, and i ≠ j,

lim
t→+∞

(xi(t) − xj(t)) = 0, lim
t→+∞

(vi(t) − vj(t)) = 0.

In the following, we are ready to give the main theorem of this paper.

Theorem 1. For system (1) satisfying Assumption 1, the adaptive event-triggered protocol (4) with i ∈  , under
the event-triggering mechanism (6), guarantees that the resulting closed-loop system has a unique solution
on [0, +∞) and the connectivity of initial communication graph is preserved on [0, +∞), and furthermore,
limt→+∞(xi(t) − xj(t)) = 0, limt→+∞(vi(t) − vj(t)) = 0, ∀i, j ∈  and i ≠ j. Besides, Zeno behaviour is excluded by
ensuring inf{k}

(
ti
k+1 − ti

k

)
> 0.

Proof. Let us first show Te = +∞ by showing the boundedness of all the closed-loop signals (xi, vi,ui, �̂�i, ̂𝜃i, zi)
(i ∈ ) and the exclusion of Zeno behavior on [0, Te). Specifically, by Proposition 1, integrating both sides of
(7) gets for any t ∈

[
ti
k, ti

k+1

)
,

V(t) − V
(

ti
k

)
≤ −1

2

N∑

i=1
∫

t

ti
k

⎛
⎜
⎜
⎝

∑

j∈i

𝜔ij(s)
(

xi(s) − xj(s)
)⎞
⎟
⎟
⎠

2

ds −
N∑

i=1
∫

t

ti
k

z2
i (s)
2

ds + g
∫

t

ti
k

N∑

i=1
𝜂

2
i (s)ds.

Then, by the continuity of V at each triggering time ti
k, and noting ti

1 = 0, we have

V(t) − V(0) ≤ −1
2

N∑

i=1
∫

t

0

⎛
⎜
⎜
⎝

∑

j∈i

𝜔ij(s)
(

xi(s) − xj(s)
)⎞
⎟
⎟
⎠

2

ds −
N∑

i=1
∫

t

0

z2
i (s)
2

ds + g
∫

t

0

N∑

i=1
𝜂

2
i (s)ds, ∀t ∈ [0, Te). (10)

From this, the definition of V in Proposition 1 and the square integrability of 𝜂i’s, it follows that for any i ∈  ,

⎧
⎪
⎪
⎨
⎪
⎪
⎩

sup
t∈[0, Te)

(|zi(t)| + |�̂�i(t)| + || ̂𝜃i(t)||) < +∞,

∫
Te

0

⎛
⎜
⎜
⎝

(
∑

j∈i

𝜔ij(s)
(

xi(s) − xj(s)
)
)2

+ z2
i (s)

⎞
⎟
⎟
⎠

ds < +∞.
(11)

Also, by (10), we have for any i, j ∈  ,

Pij(t) ≤ 2V(t) ≤ 2V(0) + 2g
∫

t

0

N∑

i=1
𝜂

2
i (s)ds ≤ c, ∀t ∈ [0, Te),

with c an unknown positive constant. Based on this, and noting the definition of Pij in (2), we yield for any
(i, j) ∈  ,

|xi(t) − xj(t)| ≤ kij = −
c
2
+
√
( c

2

)2
+ rc < r, ∀t ∈ [0, Te). (12)

We next show the boundedness of (xi, vi,ui) on [0, Te) (∀i ∈ ). Note that f (l) = 2r−l
(r−l)2

is an increasing func-
tion with respect to l on [0, r). Then, by the definitions of 𝜔ij in (3) and 𝛼i in (4), and invoking |xi − xj| ≤ kij

in (12), we derive that on [0, Te), |𝛼i| ≤
∑

j∈i

(2r−kij)kij

(r−kij)2
< +∞. From this and vi = zi + 𝛼i in (4), utilizing the

boundedness of zi in (11), we obtain that vi(t) is bounded on [0, Te). Moreover, by ẋi = vi in (1), we gain

dx2
i (t)
dt

= 2xi(t)vi(t) ≤ x2
i (t) + v2

i (t),
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8 GUO and LIU

from which and vi = zi −
∑

j∈i
𝜔ij(xi − xj), it follows that

x2
i (t) ≤ etx2

i (0) + ∫

t

0
et−sv2

i (s)ds ≤ 2et
⎛
⎜
⎜
⎝

x2
i (0) + ∫

t

0

⎛
⎜
⎜
⎝

⎛
⎜
⎜
⎝

∑

j∈i

𝜔ij(s)(xi(s) − xj(s))
⎞
⎟
⎟
⎠

2

+ z2
i (s)

⎞
⎟
⎟
⎠

ds
⎞
⎟
⎟
⎠

.

This, in conjunction with (11), yields that xi(t) is bounded on [0, Ti
e). Also, for any i, j ∈  , define functions

fij(l), gij(l) and hij(l) as follows:

fij(l) =
2r − l
(r − l)2

, gij(l) =
3r − l
(r − l)3

, hij(l) =
2(4r − l)
(r − l)4

, l ∈ [0, r). (13)

Note that functions fij(l), gij(l) and hij(l) are increasing with respect to l on [0, r). Then, by (12), we obtain for
any (i, j) ∈  and t ∈ [0, Te),

fij(|xi(t) − xj(t)|) ≤ fij(kij), gij(|xi(t) − xj(t)|) ≤ gij(kij), hij(|xi(t) − xj(t)|) ≤ hij(kij). (14)

Based on this, we next prove the boundedness of ui on [0, Te). By (13) and the definition of 𝜔ij in (3), and
noting ẋi = vi and 𝛼i = −

∑
j∈i

𝜔ij(xi − xj), we derive for any (i, j) ∈  ,

D+
𝛼i = −

∑

j∈i

(
�̇�ij(xi − xj) + 𝜔ij(vi − vj)

)

= −
∑

j∈i

(
gij(|xi − xj|)|xi − xj|(vi − vj) + fij(|xi − xj|)(vi − vj)

)
, (15)

which, together with (14), yields the boundedness of D+
𝛼i. Then, by the continuity of 𝜙i(vi) and the

boundedness of (zi, vi, ̂𝜃i) on [0, Ti
e), we derive that ui is bounded on [0, Te).

By the aid of the boundedness of (xi, vi,ui, �̂�i, ̂𝜃i, zi) (i ∈ ) on [0, Te), we now exclude Zeno behaviour. By
(1), (14) and (15), we have for any (i, j) ∈  ,

D+(D+
𝛼i) = −

∑

j∈i

(
�̈�ij(xi − xj) + 2�̇�ij(vi − vj) + 𝜔ij(v̇i − v̇j)

)

= −
∑

j∈i

(
hij(|xi − xj|)(xi − xj)(vi − vj)2 + gij(|xi − xj|)|xi − xj|(v̇i − v̇j)

)

−
∑

j∈i

(

2gij(|xi − xj|)
xi − xj

|xi − xj|
(vi − vj)2 + fij(|xi − xj|)(v̇i − v̇j)

)

,

which, together with (1), (14), the continuity of 𝜙i(vi) and the boundedness of (xi, vi,ui) on [0, Te), yields that
D+(D+

𝛼i) is bounded on [0, Te).
Noting the continuous differentiability of 𝜙i(vi) and the boundedness of (xi, vi,ui, �̂�i, ̂𝜃i, zi,D+

𝛼i,D+(D+
𝛼i)),

and invoking (5), we obtain that there exists a positive constant M such that, for any k,

|D+ei(t)| ≤ M, ∀t ∈
[

ti
k, t

i
k+1

)
. (16)

Also, according to the triggering mechanism (6), we obtain for any i ∈  ,

|ei(t)| ≤ 𝜂i(t), ∀t ∈
[

ti
k, ti

k+1

)
.

By this and (16), we gain

|
|
|
D+e2

i (t)
|
|
|
= |
|2ei(t)D+ei(t)|| ≤ 2M𝜂i(t), ∀t ∈

[
ti
k, ti

k+1

)
. (17)
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GUO and LIU 9

Moreover, it follows from the definition of ti
k in (6) that e2

i

(
ti
k

)
= 0 and e2

i

(
ti−
k+1

)
= 𝜂2

i

(
ti
k+1

)
. Then, by (17),

we get

𝜂

2
i
(

ti
k+1

)
=
∫

ti
k+1

ti
k

D+e2
i (s)ds ≤

∫

ti
k+1

ti
k

|
|
|
D+e2

i (s)
|
|
|
ds ≤ 2M max

t∈
[

ti
k ,t

i
k+1

)𝜂i(t)
(

ti
k+1 − ti

k

)
,

which yields for any i ∈  ,

inf
{k}

(
ti
k+1 − ti

k

)
≥

𝜂

2
i

(
ti
k+1

)

2M max
t∈
[

ti
k ,t

i
k+1

)𝜂i(t)
≥

min
t∈[0,Te)

𝜂

2
i (t)

2M max
t∈[0,Te)

𝜂i(t)
> 0.

This means that no Zeno behavior for the closed-loop system occurs. Hence, we gain Te = +∞.
Finally, we show that the connectivity of initial communication graph is preserved on [0, +∞). By repeat-

ing the proof of (12), noting Te = +∞, we readily derive that (12) holds for any t ∈ [0, +∞). As a result, the
connectivity preservation of MASs (1) is achieved on [0, +∞). Then, by Proposition 2, we obtain that the states
of all agents reach consensus.

This completes the proof of the theorem. ▪

Proof of Proposition 2. We first prove limt→+∞(xi(t) − xj(t)) = 0 for any i, j = 1, … ,N, i ≠ j. Choose
Lyapunov function U = 1

2
xTKN x, where x = [x1, … , xN]T and KN is the same as that in Lemma 1. Since

the communication graph  keeps connected on [0, +∞), from Lemma 1, it follows that KN L
𝜔
= L

𝜔
and

0 ≤ 𝜆2KN ≤ DDT, where L
𝜔
= DWDT, W = diag{w(e1), … ,w(em)} and w(ek) = 𝜔ij. Also, by the definition of

𝜔ij in (3), we have for any (i, j) ∈  ,𝜔ij(|xi − xj|) > 2
r−|xi−xj|

>

2
r
. Then, by ẋi = vi and vi = zi −

∑
j∈i

𝜔ij(xi − xj),
we arrive at

D+U(t) = xT(t)KN(z(t) − L
𝜔

x(t)),

≤ −xT(t)DWDTx(t) + 𝜆2

r
xT(t)KN x(t) + r

4𝜆2

N∑

i=1
z2

i (t)

≤ −2𝜆2

r
xT(t)KN x(t) + 𝜆2

r
xT(t)KN x(t) + r

4𝜆2

N∑

i=1
z2

i (t)

= −2𝜆2

r
U(t) + r

4𝜆2

N∑

i=1
z2

i (t), (18)

with z = [z1, … , zN]T. This, together with the definition of U and the square integrability of zi, i ∈  in (11)
below, yields for any i, j = 1, … ,N, and i ≠ j,

∫

t

0
|xi(s) − xj(s)|2ds < +∞. (19)

In addition, similar to the proofs of (11) and (12), we derive that (zi, 𝜌i, ̂𝜃i, xi − xj), i = 1, … ,N are bounded
on [0, +∞). Thus, by (4), we obtain the boundedness of (vi(t),ui(t)), i = 1, … ,N on [0, +∞). Then, it is derived
from (1) that ẋi(t) − ẋj(t), i, j = 1, … ,N are also bounded on [0, +∞). Hence, by (19), invoking Barbălat’s
Lemma (see e.g., Reference 48), we have for any i, j = 1, … ,N, and i ≠ j,

lim
t→+∞

(xi(t) − xj(t)) = 0.

We next show limt→+∞(vi(t) − vj(t)) = 0 for any i, j = 1, … ,N, i ≠ j. By (11), noting vi = zi −
∑

j∈i
𝜔ij(xi − xj),

we gain the square integrability of vi’s on [0,+∞). Also, by the boundedness of (vi(t),ui(t)), we obtain that v̇i(t),
i = 1, … ,N are bounded on [0,+∞). Then, with the help of Barbălat’s Lemma, we conclude limt→+∞ vi(t) = 0,
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10 GUO and LIU

i = 1, … ,N, which immediately yields for any i, j = 1, … ,N, and i ≠ j,

lim
t→+∞

(vi(t) − vj(t)) = 0.

This completes the proof. ▪

5 AN EXTENSION ON LEADER-FOLLOWING MULTI-AGENT SYSTEMS

This section further addresses the adaptive event-triggered connectivity-preserving consensus for the leader-following
MASs.

The leader-following MASs contain N followers and a leader. The followers’ dynamics are the same as system (1) and
the leader has the following dynamics:

ẋ0 = v0, v̇0 = 0, (20)

where x0 ∈ R and v0 ∈ R are the leader’s states.
The communication graph among the followers and the leader is denoted by  = ( ,  ,), where  = {0, 1, … ,N},

node 0 stands for the leader and = (𝜔ij)N×N stands for the weighted adjacency matrix. The subgraph formed by the N
followers therein is undirected. Note that the leader can not obtain any information from the followers, namely, (i, 0) ∉  .
In the graph , (0, i) ∈  means that the i-th follower has access to the information from the leader when |xi − x0| <

r. Denote  = {(i, j) ∈  ×  ∶ |xi − xj| < r}. To achieve the connectivity-preserving consensus of the leader-following
MASs consisting of (1) and (20), the following assumption is proposed for the initial communication graph:

Assumption 2. The initial communication graph contains a directed spanning tree with the leader being
the root.

By the aid of Assumption 2, we present the following adaptive event-triggered protocol for the leader-following MASs
(1) and (20) with i ∈  :

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

ui
(

ti
k

)
= −�̂�i

(
ti
k

)( 3
2

zi
(

ti
k

)
+ 𝜙T

i

(
vi
(

ti
k

))
̂
𝜃i
(

ti
k

)
− D+

𝛼i
(

ti
k

))
, ∀t ∈

[
ti
k, ti

k+1

)
,

𝛼i(t) = −
∑

j∈ i

𝜔ij(|xi(t) − xj(t)|)(xi(t) − xj(t)),

̇
̂
𝜃i = 𝜙i(vi)zi, zi = vi − v0 − 𝛼i,

̇
�̂�i = sign(gi)zi

(
3
2

zi + 𝜙T
i (vi) ̂𝜃i − D+

𝛼i

)
,

(21)

where i =
{

j ∈  ∶ (j, i) ∈ 
}

,
{

ti
k

}
is generated by the same event-triggering mechanism as (6), the arguments ui(t),

�̂�i(t), zi(t), ̂𝜃i(t) and D+
𝛼i(t) in the execution error ei(t) of (6) are replaced by the corresponding ones in (21), respectively.

To facilitate the performance analysis, let xi = xi − x0 and vi = vi − v0, i ∈  . Then, it follows that xi − xj = xi − xj,
vi − vj = vi − vj. It’s worth noting that due to the interaction among the leader and followers, the Lyapunov function
in Proposition 1 is substituted by V =

∑N
i=1P0i + 1

2

∑N
i=1

(∑
j∈ i∕{0} Pij + z2

i + |gi|�̃�2
i + ̃

𝜃

T
i ̃𝜃i

)
, where Pij’s are defined in (2),

the definitions of �̃�i and ̃
𝜃i are the same as those in Proposition 1, zi’s are given in (21). After slight substitutions, the

corresponding proofs can proceed as those of Propositions 1 and 2 and hence are not provided here.
We now state the main theorem for the leader-following MASs (1) and (20).

Theorem 2. For the leader-following MASs (1) and (20) satisfying Assumption 2, the adaptive event-triggered
protocol (21) with i ∈  , under the event-triggering mechanism described in (21) below, guarantees that the
closed-loop system has a unique solution on [0, +∞) and the connectivity of the initial communication graph
is preserved on [0, +∞), and furthermore, limt→+∞(xi(t) − x0(t)) = 0, limt→+∞(vi(t) − v0(t)) = 0, i ∈  . Besides,
Zeno behaviour is excluded by ensuring inf{k}

(
ti
k+1 − ti

k

)
> 0.

Proof. The proof is analogue to that of Theorem 1 in Section 4 and is hence omitted. ▪
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GUO and LIU 11

6 SIMULATION EXAMPLES

This section provides two examples to illustrate the effectiveness of the proposed adaptive event-triggered
connectivity-preserving consensus strategy for the leaderless MASs and the leader-following one.

Example 1. Consider the uncertain nonlinear MASs of the form (1) (N = 4). We take 𝜙1(v1) = sin(v1)v2
1,

𝜙2(v2) = v2
2, 𝜙3(v3) = cos(v3)v2

3, 𝜙4(v4) = sin(v4) log(1 + v2
4). The initial communication graph among four

agents is depicted by Figure 1, from which, we see that Assumption 1 holds for the described MASs.
It’s worth pointing out that the nonlinear functions 𝜙i(vi)’s taken above make the control strategies in

works15,17,19 no longer feasible. Works15,17 only concerned on the linear MASs, while work19 required the
differences between any two agents’ nonlinearities to be bounded. According to the control scheme adopted in
Section 3, the adaptive event-triggered control protocol is devised in the form of (4) with the event-triggering
mechanism (6). Here, we pick r = 1.5, 𝜂1(t) = e−0.2t, 𝜂2(t) = e−5t, 𝜂3(t) = e−10t, 𝜂4(t) = e−6t.

Let [g1, g2, g3, g4] = [1, 0.2, 1, 0.5], [𝜃1, 𝜃2, 𝜃3, 𝜃4] = [1, 0.1, 0.1, 0.1]. Choose the initial value
[x1(0), x2(0), x3(0), x4(0)] = [−0.3, 0.5, 0.2, 0.3], [v1(0), v2(0), v3(0), v4(0)] = [0.1, 1, 0.1, 0.5], [�̂�1(0), �̂�2(0), �̂�3(0),
�̂�4(0)] = [−0.5, 0.2,−0.6,−1], [ ̂𝜃1(0), ̂𝜃2(0), ̂𝜃3(0), ̂𝜃4(0)] = [−4, 0.9,−1,−0.2]. Then, we obtain Figures 2–7 by
simulation. From Figures 2 and 3, we see that system states (xi, vi), i = 1, … , 4, reach consensus, and the
adaptive event-triggered control protocol ui converges to zero and the adaptive dynamic gains (�̂�i, ̂𝜃i) are
bounded. Figures 4–6 display that for each agent, the inter-execution times are positive after 1 s. This in
turn implies the exclusion of Zeno behavior for the closed-loop system. Figure 7 indicates that the distances
between initial neighboring agents are always less than r = 1.5. As such, the effectiveness of the proposed
adaptive event-triggered connectivity-preserving consensus strategy is demonstrated.

F I G U R E 1 Initial communication graph among four agents in Example 1.

F I G U R E 2 Evolution of four agents’ states in Example 1.

 10991239, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7169 by Shandong U

niversity L
ibrary, W

iley O
nline L

ibrary on [02/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 GUO and LIU

F I G U R E 3 Evolution of four agents’ control protocols and dynamic gains in Example 1.

F I G U R E 4 Evolution of inter-execution times of agents 1 and 2 in Example 1.

F I G U R E 5 Evolution of inter-execution times of agent 3 in Example 1.

F I G U R E 6 Evolution of inter-execution times of agent 4 in Example 1.
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GUO and LIU 13

F I G U R E 7 Evolution of the distances between initial neighboring agents in Example 1.

F I G U R E 8 Initial communication graph among five followers and a leader in Example 2.

F I G U R E 9 Evolution of the five followers’ states and the leader’ states in Example 2.

Example 2. Consider the leader-following MASs with five followers and a leader. The dynamics of the
followers and the leader are of form (1) and (20), respectively. The followers’ nonlinearities therein
are as follows: 𝜙1(v1) = sin(v1)v2

1, 𝜙2(v2) = cos(v2)v2
2, 𝜙3(v3) =

v2
3

1+v2
3
, 𝜙4(v4) = sin(v4) log

(
1 + v2

4
)
, 𝜙5(v5) =

v5 log
(
1 + v2

5
)
. The initial communication graph among the five followers and the leader is shown by Figure 8,

from which, we see that leader 0 sends information to followers 1 and 3, but does not have access to
information from the five followers.

In the light of Section 5, we adopt the adaptive event-triggered protocol of form (21). The
thresholds 𝜂i(t)’s involved in the five triggering mechanisms are chosen as 𝜂1(t) = e−20t, 𝜂2(t) = e−38t,
𝜂3(t) = e−26t, 𝜂4(t) = e−35t, 𝜂5(t) = e−40t. Also, we select the communication radius r = 3.5. Let [g1, g2, g3,

g4, g5] = [−1, 0.2, 1, 0.5,−0.8], [𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5] = [1, 0.1, 0.3, 0.1, 0.4]. Choose the initial value [x0(0), x1(0),
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14 GUO and LIU

F I G U R E 10 Evolution of the five followers’ dynamic gains in Example 2.

F I G U R E 11 Evolution of the five followers’ control protocols and the distances among initial neighboring leader and followers in
Example 2.

x2(0), x3(0), x4(0), x5(0)] = [0.6, 0.8, 2,−0.5, 0.6,−0.6], [v0(0), v1(0), v2(0), v3(0), v4(0)] = [0.1, 0.4, 1, 0.8, 0.5, 0.8],
[�̂�1(0), �̂�2(0), �̂�3(0), �̂�4(0), �̂�5(0)] = [−0.5, 0.2,−0.6,−1,−3], [ ̂𝜃1(0), ̂𝜃2(0), ̂𝜃3(0), ̂𝜃4(0), �̂�5(0)] = [−0.8, 2,−1,−0.
2,−2]. Then, by simulation, Figures 9–11 are given. From figures, we see that the five followers and the leader
achieve consensus, the adaptive dynamic gains are bounded, the event-triggered protocol of each agent con-
verges to zero and the distances between initial neighboring leader and followers are always less than r = 3.5.
Hence, the proposed adaptive event-triggered connectivity-preserving consensus strategy is also effective for
the leader-following scenario.

7 CONCLUDING REMARKS

This paper has achieved the connectivity-preserving consensus via adaptive event-triggered control for the uncertain
nonlinear MASs. Particularly, the investigated MASs admit the nonidentical unknown control coefficients and the het-
erogeneous nonlinearities with parameter uncertainties. With the help of potential functions and two dynamic gains,
an adaptive event-triggered protocol has been developed for each agent to handle the severe system uncertainties and
nonlinearities, the negative effect of the execution error and to achieve the consensus of MASs and the connectivity
preservation of initial communication graph. Moreover, an extended study has been conducted on the leader-following
scenario. Note that the signs of the control coefficients in this paper are known. One future work is to explore

 10991239, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7169 by Shandong U

niversity L
ibrary, W

iley O
nline L

ibrary on [02/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



GUO and LIU 15

whether it is feasible to develop an adaptive event-triggered connectivity-preserving consensus strategy when the control
coefficients have the unknown nonidentical signs. In addition, with the proposal of optimal control strate-
gies (see e.g., References 42,49–52) which balance desired performance and available control resources, another
future work is to seek an connectivity-preserving optimal control strategy for nonlinear MASs with unknown
control coefficients.
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