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Summary
Rapid convergence that can be prescribed by a user is appealing for many
applications with high requirements. This stimulates finite-time stabilization
with arbitrarily prescribed settling-time and so-called prescribed-time stabiliza-
tion. But their continuous realizations had to restrict uncertainties and/or to
bear truncated run of controllers. This paper, for nonlinear systems with large
uncertainties, realizes not only the convergence within the prescribed time,
but also the non-truncated run. First, by lending finite-time stabilization to
prescribed-time stabilization and integrating dynamic compensation, an adap-
tive controller with time-varying components is devised such that the system
state reaches the origin at a finite time less than the prescribed time, while
exhibiting local asymptotic stability (of the origin). Then by monitoring the
finite time online, the time-varying components of the adaptive controller are
frozen as their values at the finite time. The asymptotic stability guarantees the
frozen adaptive controller can make the system state remain at the origin for
all future time. But the above finite time could not be detected in practice, due
to ubiquitous disturbances. We thus modified the detection to ensure that the
system state enters a vicinity of the origin before the prescribed time and stays
there afterwards under some conditions on uncertainties and disturbances. Two
simulation examples illustrate the effectiveness of the proposed controller.
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1 INTRODUCTION AND PROBLEM FORMULATION

In this paper, we pursue continuous finite-time stabilization with arbitrarily prescribed settling-time (APST) of the
following uncertain nonlinear system:{

�̇�i = 𝜂i+1 + 𝜑i(t, 𝜂[i]), i = 1, … ,n − 1,
�̇�n = u + 𝜑n(t, 𝜂),

(1)

where 𝜂 = [𝜂1, … , 𝜂n]T ∈ Rn is the system state with the initial condition 𝜂0 = 𝜂(0) and 𝜂[i] = [𝜂1, … , 𝜂i]T; u ∈ R
is the control input; 𝜑i’s are unknown continuous functions satisfying 𝜑i(t, 0) ≡ 0, called the system nonlinearities.
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2 LIU and LIU

We say settling-time is arbitrarily prescribed, which means that for ∀Tp > 0, the settling-time can be rendered less
than Tp.

Finite-time stabilization, as an appealing control task, is to drive system states to reach zero within a finite time and
remain at zero thereafter, specializing in finite-time convergence and robustness and stability arising therefrom. Neverthe-
less, for global (continuous) finite-time stabilization,1-8 the settling-time could be rather large due to its heavy dependence
on initial conditions, and what’s more, it could be unacceptably large when large uncertainties, for which some adaptive
technique should be embedded, are allowed in the systems.6,7 To circumvent the dependence, fixed-time stabilization is
subsequently proposed.9-12 Its settling-time typically owns a uniform bound with respect to initial conditions. Further-
more, by endowing a fixed-time controller with adjustable parameters, it is possible to make its settling-time arbitrarily
prescribed (e.g., sufficiently small), and thus to achieve finite-time stabilization with APST. However, the existing con-
tinuous design schemes13,14 precluded large uncertainties as which would render the adjustable parameters inaccessible.
As argued in Reference 15, based on fixed-time controllers even strengthened by advanced techniques (e.g., adaptive
compensation), it is rather difficult or even impossible, for nonlinear systems with large uncertainties, to achieve global
(continuous) finite-time stabilization with arbitrarily prescribed settling-time.

Prescribed-time stabilization was proposed very recently, with the awareness of merits and disabilities of finite-time
stabilization.16-23 It aims to steer system states to zero within arbitrarily prescribed time Tp, but the involved controllers
are only meaningful in the prescribed finite time while literally meaningless beyond the time.16,17,19-21,23 Prescribed-time
stabilization, by making deep use of time-varying gains, paves a disparate route for the convergence within the prescribed
time. Its typical ability comes from time-varying gains which could grow to infinity as time tends to the prescribed time
Tp (i.e., finite-time escape).16,18,20,23 Moreover, the unbounded time-varying gains can capture any unknown constant
in the prescribed time, similar to dynamic high gains.24,25 This makes possible the prescribed-time controllers (based
on the unbounded gains) to accommodate large uncertainties. For instance,20,21,23 achieved prescribed-time stabiliza-
tion/regulation for nonlinear systems with large uncertainties by means of suitable time-varying gains. But the controllers
do not exhibit good robustness and stability as finite-time controllers.6,7 Thus, by freezing the time-varying gains as some
constants as time sufficiently approaches Tp, the prescribed-time controllers cannot maintain effective to go beyond Tp
(for the purpose that the controllers can be extended to the whole horizon). Note that finite-time controllers6,7 exhibit local
asymptotic stability (of the origin), even when they involve dynamic compensation components for large uncertainties.
Therefore, different from traditional adaptive controllers, adaptive finite-time controllers could ensure system stability
(sufficiently) near the origin of the system state although involved adaptive components (e.g., dynamic high gains) are
truncated.

Whether can we achieve continuous adaptive stabilization which integrates the merits of finite-/fixed-time stabiliza-
tion and prescribed-time stabilization while circumventing their individual demerits, typically for nonlinear systems with
large uncertainties? It realizes not only the convergence within the prescribed time, but also the non-truncated run on
[0,+∞) and good robustness and stability as finite-time stabilization.

On this issue, we have already made an attempt via switching adaptive feedback.15 But the discontinuous feed-
back achieved therein would confront the matter of implementation. More recently, References 26-31 also realized the
non-truncated run, by means of prescribed-time stabilization.16,17,21 In works,26,27 the controllers, which tend to zero as
time goes to the prescribed finite time, are enforced to keep zero at and after the prescribed time. But in addition to the
unexpected unbounded time-varying gains as in prescribed-time stabilization, the zero-constant controllers mean that
the systems, after the prescribed time, are in open loop and could not own stability or robustness (e.g., a small noise
could cause instability). By contrast, works,28,29,31 by integrating prescribed-time stabilization and finite-time stabiliza-
tion, avoided the unbounded time-varying gains and guaranteed stability and robustness during the overall non-truncated
run. Specifically, a time-varying (prescribed-time) controller, which is also a finite-time controller before the prescribed
finite time, is frozen as its time-invariant counterpart once the states are forced to zero before the prescribed time. Such
a line coincides with the line we pursued and later followed. Specially, work30 borrowed tools of fixed-time stabiliza-
tion and avoided the unbounded time-varying gains. But in References 28-31, large uncertainties were not involved, and
moveover, the nonlinearities were limited to be input matched in References 28-30.

The objective of this paper is, for arbitrarily prescribed time Tp > 0, to design the following continuous adaptive
controller:

u = 𝜓(t, 𝜂,L,Tp), ̇L = 𝜒(t, 𝜂,L,Tp), (2)

where 𝜓(⋅) and 𝜒(⋅) are scalar continuous functions. The controller (2) shall guarantee that for system (1):
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LIU and LIU 3

1. Global boundedness: all the signals of the resulting closed-loop system are bounded on [0,+∞) for any initial condition.
2. Finite-time convergence with APST: the system state 𝜂 reaches the origin before the prescribed time and stays there

afterwards, namely, for i = 1, … ,n,

lim
t→Tp

𝜂i(t) = 0, 𝜂i(t) = 0, ∀t ∈ [Tp,+∞). (3)

Despite the elegant objective, this paper still makes the following rather mild assumption on the system nonlinearities.

Assumption 1. There exist known continuous nonnegative functions 𝜑i(𝜂[i])’s with 𝜑i(0) = 0 such that

|𝜑i(⋅)| ≤ 𝜃𝜑i(𝜂[i])
i∑

j=1
|𝜂j| ri−𝜔

rj
, i = 1, … ,n, (4)

where 𝜃 > 0 is an unknown constant, 𝜔 ∈
(

0, 1
n

)
is an even constant* and rj’s are defined by r1 = 1, rj =

rj−1 − 𝜔, j = 2, … ,n.

Assumption 1 indicates that the system nonlinearities accommodate not only large uncertainty “𝜃”, but also low-order

growth “|𝜂j| ri−𝜔
rj ” for ri−𝜔

rj
< 1. Notably, the low-order growth distinguishes the systems from those for prescribed-time sta-

bilization.16,18,21,23 It can cover linear growth “|𝜂j|” in References 21,23, with the presence of the growth rate function

𝜑i(⋅). In fact, the linear growth can be converted into the low-order growth by splitting |𝜂j| = |𝜂j| ri−𝜔
rj |𝜂j|1− ri−𝜔

rj and by incor-

porating |𝜂j|1− ri−𝜔
rj into the growth rate function. Whereas the low-order growth could not be converted into the linear

growth since for the former, its growth rate function, which is just continuous, could not provide power “1 − ri−𝜔
rj

” of

𝜂j, for instance 𝜑i(𝜂[i]) = ||𝜂[i]|| 𝜔2 with 𝜔

2
< 1 − ri−𝜔

rj
. Moreover, for the low-order growth itself, there exist some functions

that can be bounded by it, such as | sin(𝜂j)| ≤ |𝜂j|p for p ∈ (0, 1). Thus, due to the coexistence of large uncertainty and
low-order growth, system (1) under Assumption 1 could cover various classes of systems (specially practical plants, e.g.,
simple pendulum system and robotic manipulator32).

Although Assumption 1 has appeared in the context of finite-time stabilization,7 its large uncertainty would definitely
not be admitted for APST in global (continuous) finite-time stabilization,13,14 since as argued above, the large uncer-
tainty would make the adjustable parameters fail to access. On the other hand, the low-order growth in Assumption 1 is
ruled out in prescribed-time stabilization.16-18,21,23 This is because that the low-order growth invalidates the extra expo-
nential convergence16-18,21 or strict scaling transformation by time-varying gains,23 either of which is indispensable to
achieve a prescribed-time controller. As such, Assumption 1 is said to be rather mild, in comparison with the relevant
literature.13,14,16-18,21,23

This paper deals with global continuous finite-time stabilization with APST for system (1) under Assumption 1.
The expected stabilization cannot be achieved by solely following the scheme in finite-time stabilization on [0,+∞) or
prescribed-time stabilization on [0,Tp). By integrating the two different stabilizations, we are encouraged to achieve our
expected stabilization. On this line,28-31 are the only works reported, which, however, excluded any large uncertainty.
We shall work out a novel strategy, which integrates the ability of the two different stabilizations, to achieve arbitrar-
ily prescribed settling-time (APST) in finite-time stabilization on [0,+∞) for uncertain systems via continuous adaptive
feedback.

The design strategy is split into two steps, respectively deriving two controllers with different actions which work
successively. Roughly, in the first step, an adaptive controller with time-varying gains, working on certain [0, t∗] with
t∗ < Tp, ensures the system state reaches the origin at t∗, before arbitrarily prescribed time Tp, while exhibiting asymptotic
stability in the vicinity of the origin. In the second step, based on the controller of the first step, we freeze its time-varying
gains as their values at t∗ to obtain a new controller, which works on (t∗, +∞) and makes the system state remain at the
origin from t∗ to infinity.

Specifically, in the first step, we lend finite-time stabilization to prescribed-time stabilization to achieve the aforemen-
tioned wanted performances. Most importantly, we work out crucial temporal and state transformations in Section 2.
By them, finite t-horizon [0, Tp) is transformed into infinite 𝜏-horizon [0, +∞), and correspondingly system (1) is trans-
formed into its certain variant. We devise an adaptive finite-time controller to guarantee that for the variant, the system
state reaches the origin in a finite time 𝜏∗ < +∞, while exhibiting asymptotic stability in the vicinity of the origin. With
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4 LIU and LIU

the controller, taking some variable replacements (based on the two transformations), we obtain the adaptive controller
with time-varying gains on [0, Tp) for system (1). Particularly, the asymptotic stability is retained and 𝜏∗ < +∞ implies
the system states reach zero at t∗ < Tp which can be specified by monitoring it online. The first step is truncated at t∗, and
the controller for system (1) works on [0, t∗].

In the second step starting from t∗, based on the controller of the first step, we freeze its time-varying gains as their
values at t∗, thereby obtaining a new adaptive controller on (t∗,+∞). Owing to the asymptotic stability (of the origin), the
new controller can work on (t∗,+∞) and ensure the zero equilibrium is retained from t∗ to infinity. By the control design
in two steps, we thus achieve the expected stabilization.

The controller presented above depends critically on the instant t∗ which is the first time when the system states
exactly reach zero. But in practice, ubiquitous disturbances make that the above finite t∗ could not be detected. We thus
modified the detection to ensure that the controller, under some conditions on uncertainties and disturbances, can make
the system state enter a vicinity of the origin before the prescribed time and stay there afterwards.

2 TEMPORAL AND STATE TRANSFORMATIONS

In this section, two crucial transformations are introduced. By them, finite-time control with APST is reduced to
traditional finite-time control to some extent.

Specifically, the temporal transformation is delineated in Section 2.1 to map finite time interval to infinite time inter-
val, transforming the finite-time convergence into the infinite-time convergence at the expense of certain singularity.
Subsequently, a state scaling transformation is introduced in Section 2.2 to reduce the singularity. By the two transforma-
tions, the convergence in the prescribed time of system (1) is reduced to the boundedness of system (11), and particularly
for system (1), the convergence within the finite time less than the prescribed time can be ensured by the finite-time
convergence of system (11).

2.1 Temporal transformation

Define the following temporal transformation

𝜏 = 𝜇(t), (5)

where 𝜇(⋅) ∶ [0,Tp) → [0,+∞) is a twice continuously differentiable function satisfying the following properties:

1. Strict monotonicity: The function 𝜇(⋅) satisfies 𝜇′(t) ≥ c0 for a known constant c0 > 0, where 𝜇′(t) = d𝜇(t)
dt

.

2. Ratio boundedness: The ratio 𝜇

′′(t)
𝜇

′2(t)
satisfies |𝜇′′(t)|

𝜇

′2(t)
≤ c1 for a known constant c1 > 0, where 𝜇′′(t) = d2

𝜇(t)
dt2 .

The above transformation originates from the related works.18,21,23,28 By𝜇0 = 0, temporal transformation in our work23

becomes (5). Particularly, transformation (5), as argued in Reference 23, has different delineation or milder property
(ii) in comparison with References 18,21, which would give designers more selection freedom. Actually, there are many
functions satisfying the above properties. For example, 𝜇(t) = t

Tp−t
in Reference 21 and 𝜇(t) = −Tp ln Tp−t

Tp
in Reference 28.

Property (i) shows that 𝜇(t) is invertible. Its inversion is denoted by 𝜇−1(𝜏) for the use.
For later development, define

𝛼(𝜏) = 𝜇′(t)|||t=𝜇−1(𝜏)
. (6)

Note that limt→Tp 𝜇(t) = +∞. Then there is 𝜇′(t) → +∞ as t → Tp, otherwise 𝜇(t) is bounded on [0,Tp). This, together
with (5) and (6), implies 𝛼(𝜏) → +∞ as 𝜏 → +∞.

By (6), we have

𝜇

′′(t)
𝜇

′(t)
=

d
(

d𝜇(t)
dt

)
dt

d𝜇(t)
dt

=
d
(

d𝜇(t)
dt

)
d𝜇(t)

= d𝛼(𝜏)
d𝜏

=∶ 𝛼′(𝜏).
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LIU and LIU 5

From properties (i) and (ii), it follows that

1
𝛼(𝜏)

≤

1
c0
,

||||𝛼
′(𝜏)
𝛼(𝜏)

|||| = |𝜇′′(t)|
𝜇

′2(t)
≤ c1. (7)

Noting t = 𝜇−1(𝜏), we have 𝜂(t) = 𝜂
(
𝜇

−1(𝜏)
)
. Furthermore, using the derivation rule of compound function yields

d𝜂
(
𝜇

−1(𝜏)
)

d𝜏
=

d𝜂
(
𝜇

−1(𝜏)
)

d𝜇−1(𝜏)
⋅

d𝜇−1(𝜏)
d𝜏

= d𝜂(t)
dt

⋅
dt
d𝜏
. (8)

From (5) to (6), it follows that d𝜏 = d𝜇(t)
dt

dt = 𝛼(𝜏)dt. Then by (8), we can reexpress system (1) in infinite 𝜏-horizon

⎧⎪⎨⎪⎩
d𝜂i(𝜇−1(𝜏))

d𝜏
= 1

𝛼(𝜏)
𝜂i+1 + 1

𝛼(𝜏)
𝜑i
(
𝜇

−1(𝜏), 𝜂[i]
)
, i = 1, … ,n − 1,

d𝜂n(𝜇−1(𝜏))
d𝜏

= 1
𝛼(𝜏)

u + 1
𝛼(𝜏)

𝜑n
(
𝜇

−1(𝜏), 𝜂
)
.

(9)

By dint of transformation (5), the objective limt→Tp 𝜂i(t) = 0 in (3) is reduced to the infinite-time convergence of system
(9) on [0,+∞). This enables traditional theories and methods on infinite time interval to be used, and thus renders the
convergence within the prescribed time possible for uncertain nonlinear systems.

Nevertheless, transformation (5) makes system (9) be of certain singularity; that is, the control gain confronts factor
“ 1
𝛼(𝜏)

” which tends to zero as 𝜏 → +∞. This is disadvantageous to the controller design. Thus, it is required to introduce
a state scaling transformation to reduce the singularity.23,33

2.2 State scaling transformation

To reduce the singularity caused by the temporal transformation, we introduce state scaling transformation as follows:

xi = 𝛼n−i+1(𝜏)𝜂i, i = 1, … ,n. (10)

By this and (9), we get the following variant of system (1):{ dxi(𝜏)
d𝜏

= xi+1 + fi(𝜏, x[i]), i = 1, … ,n − 1,
dxn(𝜏)

d𝜏
= u + fn(𝜏, x),

(11)

where fi(𝜏, x[i]) = 𝛼n−i(𝜏)𝜑i
(
𝜇

−1(𝜏), 𝜂[i]
)
+(n − i + 1) 𝛼

′(𝜏)
𝛼(𝜏)

xi with fi(𝜏, 0) ≡ 0.
From the definitions of ri’s and 0 < 𝜔 < 1

n
in Assumption 1, it follows that n − i − (n − j + 1) ri−𝜔

rj
= −(i − j + 1) ⋅(

1 − (n−j+1)𝜔
1−(j−1)𝜔

)
< 0 for j = 1, … , i and i = 1, … ,n. This, together with the boundedness of 1

𝛼(𝜏)
in (7), implies

max
j=1,… ,i, i=1,… ,n

{
𝛼

n−i− (n−j+1)⋅(ri−𝜔)
rj (𝜏)

}
≤ c2,

for a known constant c2 > 0. As a result, from (7), (10) and Assumption 1, it follows that

|fi(𝜏, x[i])| ≤ 𝛼n−i(𝜏)𝜃𝜑i

(
x1

𝛼

n(𝜏)
, … ,

xi

𝛼

n−i+1(𝜏)

)
⋅

i∑
j=1

( |xj|
𝛼

n−j+1(𝜏)

) ri−𝜔
rj
+ (n − i + 1)𝛼

′(𝜏)
𝛼(𝜏)

|xi|
≤ 𝜃f i(𝜏, x[i])

i∑
j=1

|xj| ri−𝜔
rj
, i = 1, … ,n, (12)

where 𝜃 = max{𝜃, 1} and known nonnegative function f i(𝜏, x[i]) = c2𝜑i

(
x1

𝛼

n(𝜏)
, … ,

xi
𝛼

n−i+1(𝜏)

)
+ (n − i + 1)c1|xi| 𝜔ri is con-

tinuous with f i(𝜏, 0) ≡ 0. Due to 1
𝛼(𝜏)
≤

1
c0

in (7), there exists known smooth function ̃f i(x[i]) > 0 such that f i(𝜏, x[i]) ≤
̃f i(x[i]).
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6 LIU and LIU

With two transformations (5) and (10), we learn that if we can realize global finite-time stabilization of system (11),
then a controller with time-varying components can be devised such that the system state of system (1) reaches the origin
at a finite time less than the prescribed time Tp, while exhibiting asymptotic stability in the vicinity of the origin. By
monitoring the finite time online and freezing the time-varying components in the controller as their values at the finite
time, the asymptotic stability guarantees the frozen controller maintains effective and the system state remains at the
origin for all future time. As such, finite-time stabilization with APST for system (1) can be established on [0,+∞). In
view of this, we next address global finite-time stabilization of system (11).

Remark 1. The similar line has appeared in References 28-30 wherein the system merely has the input
matched nonlinearities and admits the uncertainties with known bounds. Without any transformation, by
borrowing tools of finite-time stabilization, work31 also has achieved the non-truncated run and avoided
unbounded time-varying gains, but which merely allows for uncertainties with known bounds and nonlin-
earities with the linear growth. By contrast, system (1) in the current paper accommodates large uncertainty

(without any known bound) and low-order growth, reflected by “𝜃” and “|𝜂j| ri−𝜔
rj ” for ri−𝜔

rj
< 1, respectively.

3 CONTROLLER DESIGN

This section seeks for an adaptive controller to achieve finite-time stabilization for the variant of system (1) (i.e., system
(11)) in infinite 𝜏-horizon. Based on the controller, it is possible to obtain a finite-time controller with APST for system
(1) in infinite t-horizon.

We design the following adaptive finite-time controller

⎧⎪⎨⎪⎩
uf(x, ̂Θ) = x∗n+1(x, ̂Θ),
d ̂Θ
d𝜏
=

n∑
j=1
𝛾j(𝜏, x[j], ̂Θ)z2−𝜔

j ,

̂Θ(0) > 0,
(13)

where x∗n+1(x, ̂Θ) and zj’s are recursively defined by

⎧⎪⎨⎪⎩
x∗j+1(x[j], ̂Θ) = −zrj+1

j 𝜙j(x[j], ̂Θ),

zj = x
1
rj

j −
(

x∗j (x[j−1], ̂Θ)
) 1

rj
,

(14)

with x∗1(⋅) = x[0] = 0, nonnegative functions 𝜙j(⋅)’s and 𝛾j(⋅)’s are smooth and continuous, respectively, and 𝛾j(𝜏, 0, ̂Θ) ≡ 0.
In what follows, 𝜙j(⋅)’s and 𝛾j(⋅)’s are those generated recursively in Appendix. Their generation is one of important

tasks in the paper, which is deferred to the appendix merely for the compactness.
In (13) and (14), r1, … , rn and 𝜔 are the same as in Assumption 1, and rn+1 = rn − 𝜔.
We then define the Lyapunov function candidate:

V(x, ̂Θ) =
n∑

i=1
Wi(⋅), (15)

where W1(x1) = 1
2

z2
1 and Wj(x[j], ̂Θ), j = 2, … ,n are defined by

Wj(⋅) =
∫

xj

x∗j (x[j−1],
̂Θ)

(
s

1
rj −

(
x∗j (x[j−1], ̂Θ)

) 1
rj

)2−rj

ds. (16)

For later development, we characterize the basic properties of Wi(⋅)’s by the following proposition (it is similar to
proposition 1 of Reference 7, and hence its proof is omitted here).

Proposition 1. Functions Wi(⋅), i = 2, … ,n are continuously differentiable and satisfy

2
(ri−1)(2−ri)

ri
−1ri|xi − x∗i (⋅)| 2

ri ≤ Wi(⋅) ≤ 21−ri z2
i . (17)
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LIU and LIU 7

Proposition 2. Function V(x, ̂Θ) is continuously differentiable, and for any fixed ̂Θ, is positive definite and
radially unbounded with respect to x.

Proof. By Proposition 1, we have the continuous differentiability and the positive definiteness of V(x, ̂Θ). It
remains to prove its radial unboundedness with respect to x, which actually can be completed by verifying
the radial unboundedness with respect to xi’s. From (16), it follows that W1(x1)→ +∞ as |x1|→ +∞. Then,
noting V(x, ̂Θ) ≥ W1(x1) by (15), we have V(x, ̂Θ)→ +∞ as |x1|→ +∞. Moreover, it can be seen from (14)
that x∗i (⋅)merely contains variables x[i−1] and ̂Θ. Then, with (17), we get Wi(x[i], ̂Θ)→ +∞ as |xi|→ +∞. This,
together with V(⋅) ≥ Wi(⋅), implies V(x, ̂Θ) → +∞ as |xi|→ +∞. As such, we have the radial unboundedness
of V(x, ̂Θ) with respect to xi’s and in turn x for fixed ̂Θ. ▪

Proposition 3. Along the closed-loop system consisting of (11), (13), and (14) with 𝜙j(⋅)’s and 𝛾j(⋅)’s as in
Appendix, function Vn(x, ̂Θ) = V(x, ̂Θ) + 1

2
̃Θ2 satisfies

dVn

d𝜏
≤ −

n∑
j=1

z2−𝜔
j , (18)

where ̃Θ = Θ − ̂Θ with Θ > 0 being an unknown constant depending on unknown 𝜃 in (12).

Proof. The proof is completed with the generation of design functions 𝜙i’s and 𝛾i’s in Appendix. Therein,
parameter Θ is suitably selected to make (A2), (A6), and (A7) hold, which merely depends on unknown 𝜃 in
the system nonlinearities and acts as an upper bound of some terms with 𝜃. ▪

With the above design and propositions, we have the following two lemmas for the variant (11) in infinite 𝜏-horizon,
which play a key role in realizing finite-time stabilization with APST for system (1) in infinite t-horizon.

Lemma 1. Under adaptive controller (13), the system signals x(𝜏), ̂Θ(𝜏) and uf(𝜏) are globally bounded on
[0,+∞), namely, for any initial condition (x(0), ̂Θ(0)), there is constant M > 0 such that ||x(𝜏)|| + | ̂Θ(𝜏)| +|uf(𝜏)| ≤ M, ∀𝜏 ≥ 0.

Proof. From (11), (13), and (14), we see that the vector field of the closed-loop system is continuous in (𝜏, x, ̂Θ),
but not locally Lipschitz in x. Then the closed-loop system has at least one forward solution satisfying the
initial condition.

By the radial unboundedness of V(x, ̂Θ) in Proposition 2, we have Vn(x, ̂Θ) is radially unbounded with
respect to (x, ̂Θ).

From (18), it follows that

0 ≤ Vn(x(𝜏), ̂Θ(𝜏)) ≤ Vn(x(0), ̂Θ(0)) < +∞, 𝜏 ≥ 0. (19)

Note that Vn(x(0), ̂Θ(0))merely depends on the initial condition. Then, from (19) and the radial unbound-
edness of Vn(x, ̂Θ), it is concluded that all the solutions (starting from the identical initial condition) share one
upper bound on [0,+∞). Thus, all the closed-loop signals are globally bounded on [0,+∞). ▪

Lemma 2. Under adaptive controller (13), system states xi’s reach zero in finite time and remain at zero
thereafter.

Proof. By (13), (14) and the boundedness of xi’s and ̂Θ, we readily get the boundedness of dzi
d𝜏

, which implies the
uniform continuity of zi’s. Moreover, using (18) yields ∫ +∞0 z2−𝜔

i (𝜏)d𝜏 < +∞with 2 − 𝜔 > 1. Thus, by Barbălat
lemma in Reference 32, we obtain lim

𝜏→∞ zi(𝜏) = 0. By (14) and the convergence of z1, we immediately have
the convergence of x1 and x∗2(⋅). This, in conjunction with the convergence of z2 and x2 =

(
z2 +

(
x∗2(⋅)

) 1
r2

)r2
,

implies lim
𝜏→∞ x2(𝜏) = 0. From (14) and lim

𝜏→∞ z2(𝜏) = 0, it follows that the convergence of x∗3 . By this and
the convergence of z3, and using (14), we get lim

𝜏→∞ x3(𝜏) = 0. Similarly, it can be recursively deduced that
lim

𝜏→∞ xi(𝜏) = 0, i = 1, … ,n.
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8 LIU and LIU

Note that function 𝛾i(𝜏, x[i], ̂Θ) is continuous and 𝛾i(𝜏, 0, ̂Θ) ≡ 0. Also note that 𝜏 works merely through
1
𝛼(𝜏)

in function 𝛾i(⋅), and particularly 1
𝛼(𝜏)
≤

1
c0

. Then, from lim
𝜏→∞ xi(𝜏) = 0 and the boundedness of ̃Θ, it is

concluded that for any initial condition, there exists a finite time T1 > 0 such that

1
2
− ̃Θ𝛾i(𝜏, x[i](𝜏), ̂Θ(𝜏)) ≥ 0, 𝜏 ≥ T1, i = 1, … ,n. (20)

By this, (13) and (18), and recalling Vn(x, ̂Θ) = V(x, ̂Θ) + 1
2
̃Θ2, we get (on [T1,+∞))

dV
d𝜏
≤ −1

2

n∑
j=1

z2−𝜔
j −

n∑
j=1

(1
2
− ̃Θ𝛾j(⋅)

)
z2−𝜔

j ≤ −1
2

n∑
j=1

z2−𝜔
j . (21)

From Proposition 1 and (|𝜉1| + · · · + |𝜉n|)p ≤ |𝜉1|p + · · · + |𝜉n|p for 0 < p ≤ 1 and 𝜉i ∈ R, it follows that

−
n∑

j=1
z2−𝜔

j ≤ −2
(2−𝜔)(rn−1)

2

n∑
j=1

W
2−𝜔

2
j (x[j], ̂Θ) ≤ −2

(2−𝜔)(rn−1)
2 V

2−𝜔
2 (x, ̂Θ). (22)

This, together with (21), implies (on [T1,+∞))

dV
d𝜏
≤ −2

(2−𝜔)(rn−1)
2

−1V
2−𝜔

2
.

Thus, V(x(𝜏), ̂Θ(𝜏)) converges to zero in the finite time T1 + 21− (2−𝜔)(rn−1)
2

V
𝜔

2 (x(T1), ̂Θ(T1))|𝜔| =∶ T2. Note by Proposi-
tion 2 that V(x, ̂Θ) is positive definite for any fixed ̂Θ. Then, the system states xi(t)’s converge to zero in finite
time T2 and remain at zero thereafter. ▪

4 FINITE-TIME STABILIZATION WITH APST

This section presents the main theorem on finite-time stabilization with arbitrarily prescribed settling-time in infinite
t-horizon for system (1) under Assumption 1.

Based on (13) and (14), replacing 𝜏 and d ̂Θ
d𝜏

with 𝜇(t) and 1
𝜇

′(t)
̇

̂Θ, respectively, we devise the continuous adaptive
controller (t-horizon) as follows:

u =

{
ut, if t ≤ t∗,
uc, if t > t∗,

(23)

where t∗ is generated by

t∗ = inf
{

0 ≤ t < Tp
||| 𝜂i(t) = 0, i = 1, … ,n

}
, (24)

which can be specified by monitoring the behaviour of 𝜂i’s online. Namely, once the system states reach zero, controller
ut is switched into uc.

In (23), ut and uc, based on controller (13), are defined by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎧⎪⎨⎪⎩
ut = uf(x, ̂Θ),
̇

̂Θ = 𝜇′(t)
n∑

j=1
𝛾j(𝜇(t), x[j], ̂Θ)z2−𝜔

j ,

̂Θ(0) > 0,

⎧⎪⎨⎪⎩
uc = uf(x, ̂Θ),
̇

̂Θ = 𝜇′(t∗)
n∑

j=1
𝛾j(𝜇(t∗), x[j], ̂Θ)z2−𝜔

j .

(25)
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LIU and LIU 9

In (25), zj’s, 𝛾j(⋅)’s and 𝜔 are the same as in (13) and (14), x = [x1, … , xn], x[j] = [x1, … , xj], and xj’s are defined by

xj =

{(
𝜇

′(t)
)n−j+1

𝜂j, in ut on t ≤ t∗,(
𝜇

′(t∗)
)n−j+1

𝜂j, in uc on t > t∗.

Alternatively, controller (23) can be written as

⎧⎪⎨⎪⎩
u = uf(x, ̂Θ),
̇

̂Θ = 𝜇1(t)
n∑

j=1
𝛾j(𝜇2(t), x[j], ̂Θ)z2−𝜔

j ,

̂Θ(0) > 0,

where xj = (𝜇1(t))n−j+1
𝜂j,

𝜇1(t) =

{
𝜇

′(t), t ≤ t∗,
𝜇

′(t∗), t > t∗,
𝜇2(t) =

{
𝜇(t), t ≤ t∗,
𝜇(t∗), t > t∗,

and the others are the same as in (23).
From (25), we see that controller ut builds on not only time-varying gains𝜇(t) and𝜇′(t) but also adaptive compensation

̂Θ. By monitoring online the time t∗ at which states 𝜂i’s reach zero, we freeze time-varying gains 𝜇(t) and 𝜇′(t) as their
values at the finite time (i.e., 𝜇(t∗) and 𝜇′(t∗)), thereby obtaining the adaptive controller uc without time-varying gains.
It is worth pointing out that uc seemingly takes value zero at and after the finite time t∗ < Tp due to 𝜂i(t) = 0 for t ≥ t∗,
unlike the related results26,27 where the controllers are enforced to keep zero at and after the prescribed time.

In particular, controller (23) overcomes the two typical flaws in the literature16,21,23,26,27 on prescribed-time control: (i)
The unbounded time-varying gains are avoided, due to that the time-varying gains 𝜇(t) and 𝜇′(t) are frozen as constants
before the prescribed-time; (ii) System (1) under controller (23) always is of closed loop on the overall non-truncated run
[0,+∞), and especially controller uc on (t∗,+∞) is a finite-time controller. Thus, controller (23) can guarantee stability
and robustness on [0,+∞) as finite-time stabilization. But in References 26,27 the zero-constant controllers mean that
the systems are of open loop after the prescribed time, that is, on [Tp,+∞). Then the zero-constant controllers, after the
prescribed time, could not guarantee stability or robustness (e.g., a small noise could cause instability).

With (23), we are now ready to give the following main theorem.

Theorem 1. For system (1) under Assumption 1, the continuous adaptive controller (23) guarantees that the
system states 𝜂i’s converge to zero in arbitrary prescribed time Tp and remain at zero thereafter, while all the
system signals are bounded on [0,+∞).

Before proving Theorem 1, we first give a proposition to show the convergence before the prescribed time Tp, whose
proof is deferred to behind the proof of Theorem 1.

Proposition 4. For system (1) under Assumption 1, the adaptive controller ut defined on [0,Tp) (in (25)) ensures
that the system state 𝜂 converges to the origin in a finite time less than Tp, while all the system signals are bounded
on [0,Tp).

Proof of Theorem 1. From Proposition 4 and its proof below, we know that under controller ut, the system
states 𝜂i’s reach zero before 𝜇−1(T2) < Tp and remain at zero on [𝜇−1(T2),Tp). This implies the existence of t∗
and t∗ ≤ 𝜇−1(T2) < Tp, and thus controller ut is meaningful on [0, t∗].

Note by 𝜏 = 𝜇(t) that ̇V = 𝜇′(t) dV
d𝜏

. Then, from (21) to (22), it follows that on [0, t∗],

̇V ≤ −𝜇
′(t)
2

2
(2+𝜔)(rn−1)

2 V
2−𝜔

2 − 𝜇′(t)
n∑

i=1

(1
2
− ̃Θ𝛾i(⋅)

)
z2−𝜔

i . (26)

By (20), we have 1
2
− ̃Θ𝛾i

(
𝜇(t), x[i](𝜇(t)), ̂Θ(𝜇(t))

)
> 0 for t ∈ [𝜇−1(T1), t∗]. This, together with (26) and

𝜇

′(t) > c0, implies (on [𝜇−1(T1), t∗])

̇V ≤ −c0

2
2
(2+𝜔)(rn−1)

2 V
2−𝜔

2
. (27)

 10991239, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7013 by Shandong U

niversity L
ibrary, W

iley O
nline L

ibrary on [22/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 LIU and LIU

From (26), we see that once the system state 𝜂 enters a enough small neighborhood of the origin to ensure
sufficient small 𝛾i(⋅)’s, the system state 𝜂 remains inside. Namely, the closed-loop system exhibits asymptotic
stability of the origin. As such, when one freezes time-varying signals𝜇(t) and𝜇′(t) in controller ut as constants
𝜇(t∗) and 𝜇′(t∗) after t∗; that is, controller ut is transformed into uc after t∗, controller uc works on (t∗,+∞)
and ensures that (27) still holds on (t∗,+∞). This implies on [t∗,+∞), zero equilibrium is retained and all the
system signals u, ̂Θ and 𝜂i’s are bounded. ▪

Proof of Proposition 4. Note by (5) that 𝜏 = 𝜇(t) and d𝜏 = 𝜇′(t)dt. Then, by replacing 𝜏 and d ̂Θ
d𝜏

with 𝜇(t) and
̇

̂Θ
𝜇

′(t)
, controller uf(x, ̂Θ) in (13) defined on [0,+∞) is changed into ut(x, ̂Θ) in (23) defined on [0,Tp).
We next show the boundedness of 𝜂, ̂Θ and ut(x, ̂Θ). Note by (7) and (10) that 𝛼(𝜏) > c0 and xi = 𝛼n−i+1(𝜏)𝜂i.

Also note by Lemma 1 that x(𝜏), ̂Θ(𝜏) and uf(x, ̂Θ) are bounded on [0,+∞). Then, we have 𝜂(t), ̂Θ(t) and ut(x, ̂Θ)
are bounded on [0,Tp).

It remains to prove the finite-time convergence of 𝜂. From Lemma 2, it follows that xi
(
𝜇

−1(𝜏)
)
’s converge

to zero before T2 and remain at zero thereafter. This, together with xi = 𝛼n−i+1(𝜏)𝜂i and 𝛼(𝜏) > c0 > 0, implies
that 𝜂i

(
𝜇

−1(𝜏)
)
’s converge to zero before T2 and remain at zero on [T2,+∞). Note by (5) that 𝜏 → T2 if and

only if t → 𝜇

−1(T2) and 𝜏 → +∞ if and only if t → Tp. Therefore, it can be concluded that 𝜂i(t)’s converge to
zero before 𝜇−1(T2) and remain at zero on

[
𝜇

−1(T2),Tp
)
. ▪

5 ON IMPLEMENTATION OF THE CONTROLLER

For the adaptive controller (23) designed above, it depends critically on the instant t∗ which is the first time when the
system states exactly reach zero (i.e., 𝜂(t∗) = 0). Actually, in the context of adaptive finite-time control, adaptive controllers
exhibit finite-time stability only after the system state enters some small (unknown) neighborhood of the origin.6,7 And
the larger the system uncertainties are, the smaller the neighborhood is. Whereas the unknown 𝜃 in Assumption 1 can
be arbitrarily large, the neighborhood that is sufficiently small and can be detected is nothing but “zero”. This forces us
to detect t∗ at which the system states are zero instead of sufficiently small.

It is for the interest of theoretical perfection and significance that 𝜃, the system uncertainty of system (1), is assumed
to be arbitrarily large and moreover no disturbance is allowed for. However in practice, disturbances are ubiquitous, and
system uncertainties (i.e., 𝜃) are relatively small. When disturbances exist, we cannot detect 𝜂(t∗) = 0 as above. Thus we
turn to detect ||𝜂(t∗)|| ≤ 𝜀 for a small 𝜀 > 0, instead of 𝜂(t∗) = 0. We will show that, with such a modified detection, the
controller, under some conditions on 𝜃 and disturbances, can make the system state enter a neighborhood before the
prescribed time and stay there afterwards.

We consider the following input-disturbed version of system (1), that is, unknown 𝜑n(⋅) therein is replaced
by d(t) + 𝜑n(⋅), {

�̇�i = 𝜂i+1 + 𝜑i(t, 𝜂[i]), i = 1, … ,n − 1,
�̇�n = u + d(t) + 𝜑n(t, 𝜂),

(28)

where d(t), which is piecewise continuous, represents the input disturbance. The matched disturbance could be due to
non-ideal state measurement and control implementation.

Accordingly, growth condition (4) for i = n is replaced by (with constant 𝛿 ≥ 0)

|d(t) + 𝜑n(t, 𝜂)| ≤ 𝜃𝜑n(𝜂)
n∑

j=1
|𝜂j| rn−𝜔

rj + 𝛿. (29)

For the input-disturbed system (28) satisfying (29), controller (23), including the detection of t∗, needs to be slightly
modified to tolerate additional 𝛿 and enable the implementation of the controller.

We should modify (24), that is, the key detection of t∗, as follows

t∗ = inf
{

0 ≤ t < Tp
||| V(x(t), ̂Θ(t)) ≤ 𝜀

}
, (30)

for a small number 𝜀 > 0.
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LIU and LIU 11

We also modify the dynamics of ̂Θ in controller uc (defined in (25)) as

̇

̂Θ(t) ≡ 0, t ∈ (t∗,+∞), (31)

namely, the gain ̂Θ in controller uc is frozen as constant ̂Θ(t∗).

Theorem 2. Consider system (28) under Assumption 1 with replacement (29). If 𝛿 and 𝜃 in (29) are known
and 𝛿 is sufficiently small, then controller (23) with modifications (30) and (31) can ensure that all the system
signals are bounded on [0,+∞), and furthermore, V(x(t), ̂Θ(t)) ≤ 𝜀, t ≥ Tp for arbitrary prescribed time Tp > 0
and small number 𝜀 > 0.

Proof. We first show the existence of t∗ < Tp. By transformations (5) and (10), we obtain the following variant
of system (28), that is, system (11) in infinite 𝜏-horizon, but fn(⋅) therein is replaced by d

(
𝜇

−1(𝜏)
)
+ fn(⋅),

{ dxi(𝜏)
d𝜏

= xi+1 + fi(𝜏, x[i]), i = 1, … ,n − 1,
dxn(𝜏)

d𝜏
= u + d

(
𝜇

−1(𝜏)
)
+ fn(𝜏, x).

(32)

As discussed in Section 2, if controller uf in (13) for system (32) guarantees V(x(𝜏∗), ̂Θ(𝜏∗)) ≤ 𝜀 for 𝜏∗ < +∞,
then controller ut for system (28) can ensure V(x(t∗), ̂Θ(t∗)) ≤ 𝜀, where 𝜇(t∗) = 𝜏∗. This implies the existence
of t∗ can be achieved by ensuring that for system (32), there exists a finite time 𝜏∗ such that V(x(𝜏∗), ̂Θ(𝜏∗)) ≤ 𝜀.

For system (32), fi(⋅), i = 1, … ,n − 1, satisfy (12), and d
(
𝜇

−1(𝜏)
)
+ fn(⋅) satisfies (by (29))

|||d(𝜇−1(𝜏)
)
+ fn(𝜏, x)

||| ≤ 𝛿 + 𝜃f n(𝜏, x)
n∑

j=1
|xj| ri−𝜔

rj
,

with known constant 𝜃 = max{1, 𝜃} and the same f n(⋅) as in (12). Thus (18) is changed into

dVn

d𝜏
≤ −

n∑
j=1

z2−𝜔
j + |zn|2−rn

𝛿

≤ −1
2

n∑
j=1

z2−𝜔
j + rn − 𝜔

2 − 𝜔

(
2(2 − rn)

2 − 𝜔

) 2−rn
rn−𝜔

𝛿

2−𝜔
rn−𝜔

=∶ −1
2

n∑
j=1

z2−𝜔
j + 𝜃∗. (33)

Note by Proposition 3 that Vn(⋅) = V(x, ̂Θ) + 1
2
̃Θ2 with ̃Θ = Θ − ̂Θ. Then from (33), it follows that

dV
d𝜏
≤ −1

2

n∑
j=1

z2−𝜔
j + 𝜃∗ + (Θ − ̂Θ)d

̂Θ
d𝜏
. (34)

From Proposition 5 below and transformation (5), it follows that V(x(t∗), ̂Θ(t∗)) ≤ 𝜀 with 𝜇(t∗) = 𝜏∗. This,
together with 𝜏∗ < +∞, implies the existence of t∗ and t∗ = 𝜇−1(𝜏∗) < Tp. Thus, time-varying gains 𝜇(t) and
𝜇

′(t) in ut are bounded.
By the boundedness of ̂Θ(𝜏) and xi(𝜏)’s on [0, 𝜏∗], and recalling transformations (5), (10), and (14), we

readily see the boundedness of ̂Θ(t), xi(t)’s, 𝜂i(t)’s, and uf(x, ̂Θ) on [0, t∗].
It remains to prove that controller uc ensures for t > t∗, V(x(t), ̂Θ(t)) ≤ 𝜀. Note that controller ut is changed

into uc by freezing time-varying gains 𝜇(t) and 𝜇′(t) as their fixed values at t∗ (i.e., 𝜇(t∗) and 𝜇′(t∗)), and by
freezing dynamic gain ̂Θ(t) as constant ̂Θ(t∗). Then, by (34), d ̂Θ

d𝜏
=
∑n

j=1𝛾j(⋅)z2−𝜔
j and ̂Θ ≥ 0, controller uc renders

(for t > t∗)

̇V ≤ −𝜇
′(t∗)
2

n∑
j=1

z2−𝜔
j + 𝜇′(t∗)𝜃∗ + Θ𝜇′(t∗)

n∑
j=1
𝛾j(𝜇(t∗), x[j], ̂Θ(t∗))z2−𝜔

j , (35)
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12 LIU and LIU

where 𝜃∗ depending on 𝛿 is sufficiently small.
From Proposition 2, we see function V(x, ̂Θ) is positive definite with respect to x for any fixed ̂Θ. Then,

for small number 𝜀, V(x, ̂Θ) ≤ 𝜀 implies |xj| ≤ 𝜀1 for small number 𝜀1 > 0. Moreover, by (17), we have |xj −

x∗j | ≤ 1
rj

2
rj
2
−
(rj−1)(2−rj)

2 W
rj
2

j (⋅). By this, (14) and V(⋅) =
∑n

j=1Wj(⋅), we get |zj| ≤ 𝜀2 for small number 𝜀2 > 0 when

V(⋅) ≤ 𝜀. Note that 𝛾j(𝜏, 0, ̂Θ) ≡ 0. Then when xj’s and zj’s are sufficiently small and 𝜃∗ is relatively smaller,
the first negative term of (35) can dominate the last two positive terms. This implies ̇V ≤ 0 when V(⋅) = 𝜀 for
sufficiently small 𝜀. Thus V(x(t), ̂Θ(t)) ≤ 𝜀 for t > t∗. ▪

Proposition 5. For system (32) in infinite 𝜏-horizon, controller uf in (13) guarantees that there exists a finite
time 𝜏∗ < +∞ such that V(x(𝜏∗), ̂Θ(𝜏∗)) ≤ 𝜀 with 𝜀 as in Theorem 2.

Proof. Suppose by contradiction that no such a time 𝜏∗ exists. This means V(x(𝜏), ̂Θ(𝜏)) > 𝜀 on the maximal
interval of solution existence. Thus, it follows from (22) and (33) that

dVn

d𝜏
≤ −2

(2−𝜔)(rn−1)
2

−1V
2−𝜔

2 + 𝜃∗ < −2
(2−𝜔)(rn−1)

2
−1
𝜀

2−𝜔
2 + 𝜃∗.

Noting that 𝜃∗ is sufficiently small, we in turn have dVn
d𝜏

< −𝜀3 for number 𝜀3 > 0 on the maximal interval of
solution existence. From this, we see the maximal interval is [0,+∞) and

Vn(x(𝜏), ̂Θ(𝜏)) − Vn(x(0), ̂Θ(0)) < −𝜀3𝜏, ∀𝜏 ∈ [0,+∞).

This means Vn(x(𝜏), ̂Θ(𝜏)) < 0 for some large 𝜏, which is a contradiction. ▪

6 SIMULATION EXAMPLES

In this section, we provide two examples to illustrate the effectiveness of the proposed controller. We first consider the
model of pendulum with linear damping:

Jq̈ + Bq̇ +Mgl sin q = u, (36)

where the relevant definitions can be found in Reference 32.
The first objective is to ensure that qi’s converge to zero before the prescribed time Tp and remain at zero thereafter

under the condition that B and M are unknown. We thus introduce transformations 𝜂1 = Jq and 𝜂2 = Jq̇. Then system
(36) is changed into the following form:

⎧⎪⎨⎪⎩
�̇�1 = 𝜂2,

�̇�2 = u − B
J
𝜂2 −Mgl sin

(
𝜂1
J

)
,

(37)

and the objective is transformed into the prescribed-time convergence of 𝜂i’s. Clearly, system (37) satisfies Assumption 1

with 𝜃 = max{1,B,M}, 𝜔 = 2
21

, 𝜑1 = 0 and 𝜑2 =
(

1|J| + gl

|J| 19
21

)
⋅
(|𝜂2| 𝜔r2 + |𝜂1|𝜔) by ||| sin

(
𝜂1
J

)||| ≤ ||| 𝜂1
J
|||

19
21 .

By the controller design in Section 3 with 𝜇(t) = 1
5(Tp−t)

, we get design functions 𝛾1(⋅) = |x1| 2
21 , 𝛾2(⋅) = 𝛽21 + 𝛽22, 𝜙1(⋅) =

2 +
√

1 + ̂Θ
2
(1 + x2

1)
1

21 , and 𝜙2(⋅) = 2.5 +
√

1 + ̂Θ
2
𝛾2(⋅) +𝛽23(⋅) + 𝛽24(⋅) with 𝛽21 = 0.8

(
(|x2| 2

17 + |x1| 2
21 )(1 + 𝜙

5
7
1 (⋅))

) 8
5

,

𝛽22 = 1.8
(|x1| 2

21
𝜙

21
17
1 (⋅)

) 40
21

, 𝛽23 = 1.4𝜙
21
17
1 (⋅) + 3.5𝜙

680
441
1 (⋅), and 𝛽24 = 1.8

(
̂Θ√

1+ ̂Θ2
z

44
21
1

) 40
19

+ 1.4
̂Θ𝛾2(⋅)|z2|√

1+ ̂Θ2
|z1| 23

21 .

Choose J = 1, B = 5, M gl = 1, ̂Θ(0) = 1 and [𝜂1(0), 𝜂2(0)] being [−50, 50], [30, 10], [−20,−20] and [5,−15]. Once the
condition |𝜂i(t)| ≤ 0.0000001 is detected online, that is, t∗ is detected, controller ut is switched to controller uc. Thus, we
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LIU and LIU 13

F I G U R E 1 Evolution of the closed-loop signals of system (37) with controller (23) for Tp = 3 under different initial values.

obtain Figures 1 and 2 for Tp = 3 and Tp = 5, respectively. Obviously, for every initial value, all the closed-loop signals are
bounded, and system states 𝜂i’s in Figures 1 and 2 converge to zero before Tp = 3 and Tp = 5, respectively.

The second objective considers non-vanishing disturbance 𝛿 sin(𝜔∗t) for 𝛿 > 0 and 𝜔∗ > 0 and measurement noise,
due to their ubiquity in practice. We aim to ensure that (q, q̇) converges to a vicinity of (3, 0) before the prescribed time
Tp and stays there afterwards, under the conditions that constants J, B, M and 𝛿 are known and 𝛿 is small, and the
measurement of 𝜂1 is corrupted with an additive noise of zero mean and standard deviation of 0.001.

Introduce transformations 𝜂1 = J(q − 3) and 𝜂2 = Jq̇. Then system (36) is changed into the following form:

⎧⎪⎨⎪⎩
�̇�1 = 𝜂2,

�̇�2 = u − B
J
𝜂2 −Mgl sin

(
𝜂1
J
+ 𝜋

)
+ 𝛿 sin(𝜔∗t),

(38)

and the objective is transformed into that 𝜂i’s converge to a neighborhood of the origin in prescribed time Tp.
Let J = B = 1, M gl = 0.1, 𝛿 = 0.001,𝜔∗ = 3 and [𝜂1(0), 𝜂2(0), ̂Θ(0)] = [5,−30, 1]. Choose the detection of t∗ as (30) with

𝜀 = 0.1 and freeze dynamic gain ̂Θ(t) as ̂Θ(t∗) on (t∗,+∞). Then, by the same design functions as in the first objective, we
obtain Figures 3 and 4 for Tp = 3 and Tp = 5, respectively. It can be seen that all the closed-loop signals are bounded, and
particularly, 𝜂i’s converge to a vicinity of the origin before the prescribed time.

We next consider the following system typically with low-order growth:

⎧⎪⎨⎪⎩
�̇�1 = 𝜂2 + 𝜃1𝜂

18
19
1 ,

�̇�2 = u + 𝜃2𝜂
16
17
2 ,

(39)

where 𝜃i’s are unknown positive constants. It satisfies Assumption 1 with 𝜃 = max{𝜃1, 𝜃2}, 𝜔 = 2
19

, 𝜑1(𝜂1) = |𝜂1| 1
19 , and

𝜑2(𝜂2) = |𝜂2| 1
17 .

For system (39), the control objective is to ensure that 𝜂i’s converge to zero before the prescribed time Tp and remain
at zero thereafter.
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14 LIU and LIU

F I G U R E 2 Evolution of the closed-loop signals of system (37) with controller (23) for Tp = 5 under different initial values.

F I G U R E 3 Evolution of the closed-loop signals of system (38) under controller (23) with (30) and (31) for Tp = 3.

By the controller design in Section 3 with 𝜇(t) = 1
5(Tp−t)

, we get design functions 𝛾1(⋅) = |x1| 1
19 , 𝛾2(⋅) = 𝛽21(⋅) + 𝛽22(⋅),

𝜙1(⋅) = 1 +
√

1 + ̂Θ
2
(1 + x2

1)
1

38 , and 𝜙2(⋅) = 2.3 + ̂Θ𝛾2(⋅) + 𝛽23(⋅) + 𝛽24(⋅) with 𝛽21 = 0.8
(
(|x2| 2

17 + |x1| 4
19 )(1 + 𝜙

15
19
1 (⋅))

) 36
23

,

𝛽22 = 1.9
(|x1| 2

19
𝜙

19
17
1 (⋅)

) 36
19

, 𝛽23 = 1.1𝜙
19
17
1 (⋅) + 1.1𝜙

36
17
1 (⋅), and 𝛽24 = 2.3

(
̂Θ√

1+ ̂Θ2
z2

1𝛾1

) 36
15

+ 1.2 ̂Θ√
1+ ̂Θ2

𝛾2|z1z2|.
We make performance comparisons with the related works.7,16,21,30 Note that the low-order growth coupling to

large uncertainty was not involved in the literature on arbitrarily prescribed settling-time by continuous adaptive feed-

back. Then the terms “𝜃1𝜂
18
19
1 ” and “𝜃2𝜂

16
17
2 ” disable works.16,21,30 Although for system (39), finite-time controller can be

devised,7 the setting-time may be larger than the prescribed time Tp since the settling-time, depending on the initial
condition and system uncertainties, cannot be arbitrarily prescribed. To see this point, we design a finite-time con-

troller by the scheme in Reference 7. Controller therein is u = −𝜙2(⋅)z
15
19
2 with 𝜙2(⋅) = 4.3 + ̂Θ𝛾2(⋅) + 𝛽21(⋅) + 2.2𝜙

36
17
1 (⋅),

𝛾2(⋅) = 0.8|x2| 72
391
𝜙

15
23
1 (⋅) + 1.9|x1| 72

361
𝜙

36
17
1 (⋅), 𝛽21 = 2.3

(
̂Θ√

1+ ̂Θ2
z2

1𝛾1

) 36
15

+ 1.2 ̂Θ√
1+ ̂Θ2

𝛾2(⋅)|z1z2|, ̇̂Θ = 𝛾1z
36
19
1 + 𝛾2z

36
19
2 , 𝛾1(⋅) = |x1| 1

19 ,

and 𝜙1(⋅) = 4 +
√

1 + ̂Θ
2
(1 + x2

1)
1

38 .

 10991239, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7013 by Shandong U

niversity L
ibrary, W

iley O
nline L

ibrary on [22/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



LIU and LIU 15

F I G U R E 4 Evolution of the closed-loop signals of system (38) under controller (23) with (30) and (31) for Tp = 5.

F I G U R E 5 Evolution of the closed-loop signals of system (39) with controller (23) for prescribed time Tp = 0.5.

F I G U R E 6 Evolution of the closed-loop signals of system (39) with controller (23) for prescribed time Tp = 1.

F I G U R E 7 Evolution of the closed-loop signals of system (39) with finite-time controller.

Let 𝜃1 = 3, 𝜃2 = 1 and [𝜂1(0), 𝜂2(0), ̂Θ(0)] = [1,−5, 0.1]. Once the condition |𝜂i(t)| ≤ 0.0000001 is detected online, that
is, t∗ is detected, controller ut is switched to controller uc. Thus, we obtain Figures 5–7, where all the closed-loop signals
are bounded. Under the proposed controller of this paper, states 𝜂i’s in Figures 5 and 6 converge to zero before Tp = 0.5 and
Tp = 1, respectively. But it can be seen from Figure 7 that finite-time controller only ensures the system states converge
to zero in 2 s.
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16 LIU and LIU

7 CONCLUDING REMARKS

In this paper, global finite-time stabilization with arbitrarily prescribed setting-time (APST) has been established for
uncertain nonlinear systems. Notably, we have introduced elegant temporal and state transformations, reducing the
expected stabilization to traditional finite-time stabilization to some extent. By the transformations, an adaptive controller
with time-varying components has been devised such that the system states converge to zero within a finite time less than
the prescribed time, while exhibiting asymptotic stability (of the origin). Then, by monitoring the finite time online and
freezing the time-varying components as their values at the time, we obtain a new adaptive controller to ensure that the
system state remains at the origin for all future time. Such a treatment provides a new route for APST, making the systems
allow large uncertainty and low-order growth. But the system generality is not comparable to that in the results without
time constraints. What extent of the generality can be admitted for finite-time stabilization with APST deserves further
investigation. Moreover, only state feedback control has been considered in this paper. While Reference 28 has realized
finite-time output feedback stabilization with APST, large uncertainties without any known bound are excluded. Work20

has involved large uncertainties in the setting of output feedback control, but the controller is defined on the prescribed
finite time interval which cannot be extended to infinity. Therefore, it would be of interest to develop a new output feed-
back scheme, which can ensure APST and the non-truncated run of controllers for general uncertain nonlinear systems.
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APPENDIX. GENERATION OF DESIGN FUNCTIONS

In this section, we develop a Lyapunov-based recursive procedure to show the generation of design functions 𝜙i’s and 𝛾i’s
in (13) and (14), and meanwhile verify (18).

For brevity, we introduce notations (i = 1, … ,n):

Ξi(⋅) =

(
̃Θ −

i∑
j=2

𝜕Wj

𝜕

̂Θ

)
⋅

(
d ̂Θ
d𝜏

−
i∑

j=1
𝛾j(⋅)z2−𝜔

j

)
. (A1)

Step 1. Let V1(x1, ̂Θ) = W1(x1, ̂Θ) + 1
2
̃Θ2 with ̃Θ = Θ − ̂Θ. Then, choosing Θ ≥ 𝜃, and by (12), we have

dV1

d𝜏
≤ z1x2 + Θf 1(𝜏, x1)z2−𝜔

1 − ̃Θd ̂Θ
d𝜏
. (A2)
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18 LIU and LIU

Note by (12) that ̃f 1(x1) ≥ f 1(⋅) is a smooth nonnegative function. Then, choosing𝜙1(⋅) = n +
√

1 + ̂Θ
2
̃f 1(⋅) and 𝛾1(⋅) =

f 1(⋅), and using (A1) and (A2) yield

dV1

d𝜏
≤ z1(x2 − x∗2) − nz2−𝜔

1 − Ξ1(⋅).

Recursive design step i (i = 2, … ,n). Suppose that steps 1, … , i − 1 have been completed; that is, design functions
𝜙i(⋅)’s and 𝛾i(⋅)’s have been found such that Vi−1(x[i−1], ̂Θ) = V1(x1, ̂Θ) +

∑i−1
j=2Wj(x[j], ̂Θ) satisfies

dVi−1

d𝜏
≤ z2−ri−1

i−1 (xi − x∗i ) − (n − i + 2)
i−1∑
j=1

z2−𝜔
j − Ξi−1(⋅). (A3)

Let Vi = Vi−1 +Wi. Then, from (A3), it follows that

dVi

d𝜏
≤ z2−ri−1

i−1 (xi − x∗i ) − (n − i + 2)
i−1∑
j=1

z2−𝜔
j − Ξi−1(⋅) +

𝜕Wi

𝜕

̂Θ
d ̂Θ
d𝜏

+ z2−ri
i xi+1 + z2−ri

i fi(⋅) +
i−1∑
j=1

𝜕Wi

𝜕xj

dxj

d𝜏
. (A4)

We next estimate the first term and the last two terms on the right-hand side of (A4).
Using |xp − yp| ≤ 21−p|x − y|p for odd number 0 < p < 1 and Young’s inequality, by (14) and ri = ri−1 − 𝜔, we have

z2−ri−1
i−1 (xi − x∗i ) ≤ 21−ri |zi−1|2−ri−1 |zi|ri ≤

1
4

z2−𝜔
i−1 + ci1z2−𝜔

i , (A5)

where ci1 is a positive constant.
Note that |x + y|p ≤ |x|p + |y|p for 0 < p < 1. Then, from (12), (14) and Young’s inequality, it follows that

z2−ri
i fi(⋅) ≤ |zi|2−ri

𝜃f i(𝜏, x[i])
i∑

j=1
|xj| ri−𝜔

rj

≤ 𝜃f i(⋅)|zi|2−ri

i∑
j=1

|zj|ri−𝜔 + 𝜃f i(⋅)|zi|2−ri

i−1∑
j=1
𝜙

ri−𝜔
rj+1

j (⋅)|zj|ri−𝜔

≤

1
4

i−1∑
j=1

z2−𝜔
j + Θ𝛽i1(𝜏, x[i], ̂Θ)z2−𝜔

i , (A6)

for continuous function 𝛽i1(⋅) ≥ 0 with 𝛽i1(𝜏, 0, ̂Θ) ≡ 0.
After some tedious calculations, we have

i−1∑
j=1

𝜕Wi

𝜕xj

dxj

d𝜏
≤

1
4

i−1∑
j=1

z2−𝜔
j + Θ𝛽i2(𝜏, x[i], ̂Θ)z2−𝜔

i + 𝛽i3(x[i], ̂Θ)z2−𝜔
i , (A7)

where 𝛽i2(⋅) is a continuous nonnegative function with 𝛽i2(𝜏, 0, ̂Θ) ≡ 0, and 𝛽i3(⋅) is a smooth nonnegative function.
Let us next verify (A7). From (14), we obtain

(
x∗i (x[i−1], ̂Θ)

) 1
ri = −

i−1∑
l=1

i−1∏
m=l
𝜙

1
rm+1
m (x[m], ̂Θ)x

1
rl
l ,

which implies

𝜕

((
x∗i (x[i−1], ̂Θ)

) 1
ri

)
𝜕xj

= −
i−1∑
l=1

𝜕

(∏i−1
m=l𝜙

1
rm+1
m (x[m], ̂Θ)

)
𝜕xj

x
1
rl
l −

i−1∏
m=j
𝜙

1
rm+1
m (⋅) 1

rj
x

1
rj
−1

j .
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LIU and LIU 19

Moreover, from (14) and |x + y|p ≤ |x|p + |y|p for 0 < p < 1, it follows that

⎧⎪⎨⎪⎩
|xl| 1

rl ≤ |zl| + 𝜙 1
rl
l−1(x[l−1], ̂Θ)|zl−1|,

|xj| 1
rj
−1
≤ |zj|1−rj + 𝜙

1−rj
rj

j−1 (x[j−1], ̂Θ)|zj−1|1−rj
.

Thus, there is

𝜕

((
x∗i (x[i−1], ̂Θ)

) 1
ri

)
𝜕xj

≤

i−1∑
l=1
𝜙l(x[i−1], ̂Θ)|zl|1−rj

, (A8)

with smooth nonnegative functions 𝜙l(⋅)’s.
From (12), (14) and |x + y|p ≤ |x|p + |y|p for 0 < p < 1, it can be deduced that

dxj

d𝜏
= xj+1 + fj(⋅) ≤ |zj+1|rj+1 + 𝜙j(⋅)|zj|rj+1 + 𝜃f j(⋅)

( j∑
l=1

|zl|rj−𝜔 +
j−1∑
l=1
𝜙

rj−𝜔

rl+1
l (⋅)|zl|rj−𝜔

)
. (A9)

By |xp − yp| ≤ 21−p|x − y|p for odd number 0 < p < 1, we have

∫

xi

x∗i (x[i−1],
̂Θ)

|||||s
1

r1 −
(

x∗i (x[i−1], ̂Θ)
) 1

ri
|||||
1−ri

ds ≤ |zi|1−ri ⋅ |||xi − x∗i (x[i−1], ̂Θ)
||| ≤ 21−ri |zi|. (A10)

Note that

𝜕Wi(x[i], ̂Θ)
𝜕xj

= −
∫

xi

x∗i (x[i−1],
̂Θ)

(
s

1
ri −

(
x∗i (x[i−1], ̂Θ)

) 1
ri

)1−ri

ds ⋅ (2 − ri)
𝜕

(
x∗i (x[i−1], ̂Θ)

) 1
ri

𝜕xj
.

Then, by (A8)–(A10) and Young’s inequality, we get (A7).
Define 𝛾i(⋅) = 𝛽i1(⋅) + 𝛽i2(⋅). Then, by the definition of Ξi in (A1), substituting (A5), (A6), and (A7) into (A4) yields

dVi

d𝜏
≤ −

(
n − i + 5

4

) i−1∑
j=1

z2−𝜔
j + z2−ri

i xi+1 − Ξi(⋅) +
(
̂Θ𝛾i(⋅) + ci1 + 𝛽i3(⋅)

)
z2−𝜔

i + Γi(𝜏, x[i], ̂Θ), (A11)

where Γi(⋅) =
∑i−1

j=2
𝜕Wj

𝜕

̂Θ
𝛾i(⋅)z2−𝜔

i + 𝜕Wi

𝜕

̂Θ

∑i
l=1𝛾l(⋅)z2−𝜔

l .
From (A10) and |xp − yp| ≤ 21−p|x − y|p for odd number 0 < p < 1, it follows that

|||||
𝜕Wj(x[j], ̂Θ)

𝜕

̂Θ

||||| = (2 − rj) ⋅

||||||||||

𝜕

((
x∗j (x[j−1], ̂Θ)

) 1
rj

)
𝜕

̂Θ

||||||||||
⋅
||||||∫

xj

x∗j (x[j−1],
̂Θ)

(
s

1
rj −

(
x∗j (x[j−1], ̂Θ)

) 1
rj

)1−rj

ds
||||||

≤ (2 − rj)21−rj

||||||||||

𝜕

((
x∗j (x[j−1], ̂Θ)

) 1
rj

)
𝜕

̂Θ

||||||||||
⋅ |zj|.

This, together with Young’s inequality, implies

𝜕Wj

𝜕

̂Θ
𝛾i(⋅)z2−𝜔

i ≤ (2 − rj)21−rj

|||||||
𝜕(x∗j )

1
rj

𝜕

̂Θ

|||||||
⋅ |zj|𝛾i(⋅)z2−𝜔

i ≤

1
8

z2−𝜔
j + 𝛽 ij(x[i], ̂Θ)z2−𝜔

i , (A12)
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20 LIU and LIU

with smooth function 𝛽 ij(⋅) ≥ 0. Similarly, we arrive at

𝜕Wi

𝜕

̂Θ
𝛾l(⋅)z2−𝜔

l ≤ (2 − ri)21−ri

|||||||
𝜕(x∗i )

1
rj

𝜕

̂Θ

|||||||
⋅ |zi|𝛾l(⋅)z2−𝜔

l ≤

1
8

z2−𝜔
l + ̃

𝛽 il(x[i], ̂Θ)z2−𝜔
i , (A13)

where ̃

𝛽 il(⋅) is a smooth nonnegative function.
By (A12), (A13) and the definition of Γi(⋅) in (A11), we have

Γi(⋅) ≤
i−1∑
j=1

1
4

z2−𝜔
j + 𝛽i4(x[i], ̂Θ)z2−𝜔

i ,

where 𝛽i4(⋅) =
∑i−1

j=2𝛽 ij(⋅) +
∑i

l=1
̃

𝛽 il(⋅) +
1
8
. Substitute this into (A11) and choose 𝜙i(⋅) = n − i + 1 +

√
1 + ̂Θ

2
𝛾 i(x[i], ̂Θ)

+ci1 + 𝛽i3(⋅) + 𝛽i4(⋅) with smooth function 𝛾 i(⋅) ≥ 𝛾i(⋅). Then, there is

dVi

d𝜏
≤ −(n − i + 1)

i∑
j=1

z2−𝜔
j + z2−ri

i (xi+1 − x∗i+1) − Ξi(⋅). (A14)

So far, we have shown how to specify design functions 𝜙i(⋅)’s and 𝛾i(⋅)’s in (13) and (14). By (A1) and (A14) with i = n,
and noting xn+1 = x∗n+1 and d ̂Θ

d𝜏
=
∑n

j=1𝛾j(⋅)z2−𝜔
j , we readily obtain (18) and Proposition 3.
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