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Abstract
The paper considers adaptive event-triggered control for nonlinear systems with
time-varying parameter uncertainties. The time-varying uncertainties do not need to be
differentiable, but their variation amplitudes are required to be known. Such uncertain-
ties appear not only in the system nonlinearities but also as the control coefficient. We
pursue a tight design scheme by combining tuning functions and the congelation of
variables method, thereby avoiding the overuse of dominations and obtaining a less con-
servative controller. In view of the essence of the control problem, we don’t design a
continuous controller first and then search for a complex and suitable event-triggering
mechanism, as emulation methods done in the literature. In contrast, we adopt a sim-
ple event-triggering mechanism with the relative threshold, while seeking a complex and
appropriate adaptive controller which contains the new adaptive treatment for execu-
tion error due to the unknown time-varying control coefficient. Note that there are three
parameter dynamic compensators in the adaptive controller, and one is specialized to the
execution error, which is not required in the continuous feedback context. It is shown
that with the proposed adaptive event-triggered controller, all the closed-loop signals are
bounded, the system state converges to zero, and no Zeno behavior occurs. A comparative
simulation is provided to verify the theoretical results.
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1 INTRODUCTION AND PROBLEM FORMULATION

Adaptive event-triggered control is promising because of its potential in resource efficiency and feedback capabilities.1-5

Although much progress has been made, adaptive event-triggered control still needs in-depth research. For example, inte-
grated compensation mechanisms are expected for various uncertainties and various nonlinearities in the discontinuous
sampling context. Execution errors, for some typical cases such as unknown time-varying control coefficients, call for
new adaptive treatment. The tight design schemes of event-triggered controller should be pursued to avoid the overuse
of dominations and in turn to reduce conservatism.

In this paper, we consider adaptive event-triggered control of the following nonlinear systems with time-varying
parameter uncertainties:

{
ẋi = xi+1 + 𝜃T

i (t)𝜙i(x[i]), i = 1, … ,n − 1,
ẋn = b(t)u + 𝜃T

n (t)𝜙n(x),
(1)
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where x = [x1, … , xn]T ∈ Rn is the system state with x(0) = x0, x[i] = [x1, … , xi]T; u ∈ R is the control input; 𝜙i ∶
Ri → Rqi , i = 1, … ,n are smooth nonlinear functions with 𝜙i(0) = 0. The vectors 𝜃i(t) ∈ Rqi , i = 1, … ,n and control
coefficient b(t) ∈ R ⧵ {0} are unknown time-varying parameters. In addition, 𝜃i(t), i = 1, … ,n and b(t) are (piecewise)
continuous.

System (1) (as well as their variants) is a representative form of various strict-feedback nonlinear systems, which has
been extensively studied during the past few decades.6-8 Diverse practical plants can be modeled as the form of system (1),
such as the mass-spring systems subject to time-varying external forces,9 the servo motor system10,11 and the induction
motor system.12 Inspired by the related results,8,13 we impose the following assumptions on time-varying uncertainties to
ensure the feasibility of adaptive event-triggered control.

Assumption 1. The parameters 𝜃i(t), i = 1, … ,n belong to an unknown compact set Θ, but the “radius” of
Θ, denoted by 𝛿Δ

𝜃

, is assumed to be known.

Assumption 2. The control coefficient b(t) ∈ B, where B is an unknown compact set and its “radius,”
denoted by 𝛿Δb , is known. Also, the sign of b(t) is known and unchanged.

In Assumption 1, the known “radius” 𝛿Δ
𝜃

implies that the variation amplitude of time-varying parameter 𝜃(t)
is known, where 𝜃(t) =

[
𝜃

T
1 (t), 𝜃

T
2 (t), … , 𝜃

T
n (t)

]T. To be specific, see from Assumption 1 that there are two unknown
constant vectors 𝜃 and 𝜃 with the appropriate dimensions such that 𝜃 ≤ 𝜃(t) ≤ 𝜃, for any t ≥ 0, where the notation
“≤” is defined element-wise. Then, the “radius” of Θ refers to 𝛿Δ

𝜃

= 1
2
||𝜃 − 𝜃||, which is assumed to be known. A

larger value of 𝛿Δ
𝜃

means a larger uncertainty system (1) allows. In fact, such constraint (i.e., known “radius”) is rea-
sonable since it can easily be satisfied in real life. For example, in motor vehicle or aircraft systems, the variation
amplitudes between the maximum and minimum safe driving speeds over any interval are usually known. Notably,
even if 𝛿Δ

𝜃

is unknown, we can also handle it by building an “estimate” for it using classical adaptive technique.
But we will not discuss the problem here because it can’t provide any significant improvement and overcomplicates
our problem.

The “radius” 𝛿Δb in Assumption 2 has a similar definition to the “radius” 𝛿Δ
𝜃

. Moreover, from Assumption 2,
we can find a constant 𝓁b such that sign(𝓁b) = sign(b(t)) and 0 < |𝓁b| ≤ |b(t)|. Without loss of generality, we assume
the sign of b(t) is positive. Then, the deviation of the control coefficient, defined as Δb = b(t) − 𝓁b, is positive and
bounded by 𝛿Δb . It is worth pointing out that if the control direction, that is, the sign of b(t), is unknown, compensat-
ing b(t) is not challenging by employing Nussbaum-type function (see Reference 14). We thus do not pursue this in
the paper.

Notably, unknown parameters 𝜃i(t), i = 1, … ,n and b(t) of system (1), as distinct from those in References 15-17,
are time-varying and allowed to be nondifferentiable. Thus, these parameters cannot appear in Lyapunov function
candidate, making it challenging for conventional adaptive techniques to directly “estimate” them. One method to
compensate time-varying parameters is so-called projection operation,18-20 which confines parameter dynamic com-
pensators within a prespecified compacted set to guarantee the boundedness of them. This method can achieve
asymptotic stabilization/tracking only if the derivatives of time-varying parameters are ℒ1. Another approach is switch-
ing 𝜎-modification,21-23 which adds leakages to parameter update laws if parameter estimates drift out of a prespecified
region to ensure the boundedness of parameter estimates. However, this approach cannot achieve asymptotic stabiliza-
tion/tracking when unknown parameters are persistently varying. Therefore, the above two methods are no longer valid
for asymptotically stabilizing system (1), where unknown parameters are allowed to be nondifferentiable and persistently
varying.

The robust adaptive control can achieve asymptotic stabilization of system (1), such as adaptive sliding-mode-like
control24 and continuous robust adaptive control.25 However, such control offen suffers from the overuse of dominations
and noise amplification problems, leading to conservative design. Recently, work8 proposed a less conservative control
scheme based on the congelation of variables method, where a tight controller was obtained by constraining the vari-
ation amplitudes of the time-varying uncertainties as in Assumptions 1 and 2. However, the above result do not take
event-triggered communication into account, which motivates the research of this paper.

The objective of this paper is to pursue a tight adaptive event-triggered stabilizing controller for system (1) under
Assumptions 1 and 2. The main characteristic of the tight controller is that the conservative upper bounds of time-varying
uncertainties are not estimated and utilized throughout the controller design process, thus avoiding the overuse of
dominations and reducing conservatism.
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In fact, pursuing a tight design scheme for the nonlinear systems with time-varying parameter uncertainties would
bring a series of difficulties and complexities, especially in the event-triggered setting. This is partially because the tight
design framework imposes limitations on the utilization of upper or lower bounds of time-varying uncertainties. As
a result, the execution error and nonlinearities cannot be compensated by virtual controllers that contain parameter
compensators designed for the bounds of uncertainties, as in References 5,26, and 27. Recently, work8 introduced the
congelation of variables method to compensate the time-varying uncertainties, and in turn the nonlinearities can be
counteracted via a tight controller. However, the compensation mechanism in work8 is nontrivial to incorporate into the
event-triggering framework because the execution error interacting with the control coefficient cannot be suppressed.
This compels us to seek for a powerful design scheme containing a new adaptive treatment to counteract both the
nonlinearities and execution error.

In this paper, we first introduce a new time-varying parameter vector. It can integrate unknown vectors 𝜃i(t), i =
1, … ,n, thereby transforming system (1) into another system with only one parameter vector. This allows us to domi-
nate parameters 𝜃i(t), i = 1, … ,n with just one parameter dynamic compensator by resorting to tuning functions. Then,
a distinct Lyapunov function, motivated by the congelation of variables method, is constructed, in which the time-varying
uncertainties themselves and their bounds are not involved. Particularly, a simple event-triggered mechanism with the
relative threshold is introduced to save communication resources and channel bandwidth; however, the resulting exe-
cution error, due to multiplication by a time-varying and potentially nondifferentiable coefficient b(t), becomes more
challenging to counteract. To this end, we specifically introduce a parameter dynamic compensator and an important
decomposition (i.e., (31)) to deal with the negative effects caused by coefficient b(t), and then suppress the execution error
by working with an appropriate controller. Moreover, another parameter dynamic compensator and a new decomposition
(i.e., (32)) are given to handle the nonlinearities affected by coefficient b(t). Based on this, a tight controller is derived by
backstepping approach such that, for any initial value, all the closed-loop system signals are bounded, and system state x
converges to zero while Zeno behavior does not occur.

By comparing this paper and existing results,6,7,10,28-30 the main contributions of the proposed scheme are listed as fol-
lows: (i) Time-varying parameter uncertainties in the systems under investigation are allowed to be nondifferentiable and
persistently varying. But results10,29,30 require the time-varying uncertainties to be continuously differentiable and their
first derivatives to be bounded. Importantly, when the uncertainties persistently vary, the control schemes10,29,30 can only
achieve certain boundedness rather than convergence. (ii) A tight design scheme is pursued. We build a tight controller
by avoiding the application of conservative upper bounds of time-varying uncertainties. However, in works,6,7,28 upper
and lower bounds of time-varying uncertainties are always used during the controller design, which leads to the overuse
of dominations and conservative design. Moreover, under the tight design framework, to compensate the nonlinearities
and especially execution error in the presence of unknown time-varying uncertainties, we develop a complex and appro-
priate adaptive controller. The controller contains three new parameter dynamic compensators, and one is specialized to
the execution error, which is not necessary in the continuous feedback context.

2 ADAPTIVE EVENT-TRIGGERED CONTROLLER DESIGN

This section aims to construct an adaptive event-triggered stabilizing controller for system (1) under Assumptions 1
and 2. Notably, in controller design, we avoid estimating and utilizing the conservative upper bounds of time-varying
uncertainties. Thus, it is possible to get a tight controller.

To facilitate suppressing unknown parameters 𝜃i(t), i = 1, … ,n, we lump them into vector 𝜃(t), that is, 𝜃(t) =[
𝜃

T
1 (t), 𝜃

T
2 (t), … , 𝜃

T
n (t)

]T ∈ Rq with q =
∑n

j=1qj. Also, we let 𝜙i(x[i]) =
[
0T

q1
, … , 0T

qi−1
, 𝜙

T
i (x[i]), 0

T
qi+1
, … , 0T

qn

] T
q×1, where 0qi

denotes the qi-dimensional zero vector. Then, system (1) can be rewritten as:

{
ẋi = xi+1 + 𝜃T(t)𝜙i(x[i]), i = 1, … ,n − 1,
ẋn = b(t)u + 𝜃T(t)𝜙n(x).

(2)

For system (2), we define the following coordinate transformation:

{
z1 = x1,

zi = xi − 𝛼i−1(x[i−1], ̂𝜃, ̂b), i = 2, … ,n,
(3)
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4 CHU and LIU

where smooth functions 𝛼i(⋅), i = 1, … ,n − 1 are designed as follows:

𝛼i(x[i], ̂𝜃, ̂b) = −zi−1 −
⎛⎜⎜⎜⎝
ci +

n − i + 1
2

𝛿

2
Δ
𝜃

+
|||𝜔i(x[i], ̂𝜃, ̂b)

|||2

F

2
+ 1

2
+ 𝛿

2

(
̂b + 𝛿Δb

)⎞⎟⎟⎟⎠
zi − 𝜔T

i (x[i], ̂𝜃, ̂b) ̂𝜃

+
i−1∑
j=1

𝜕𝛼i−1

𝜕xj
xj+1 +

𝜕𝛼i−1

𝜕

̂

𝜃

i∑
j=1
𝜔j(x[j], ̂𝜃, ̂b)zj +

i−1∑
j=2

𝜕𝛼j−1

𝜕

̂

𝜃

𝜔i(x[i], ̂𝜃, ̂b)zj

+ 𝜕𝛼i−1

𝜕

̂b

i∑
j=1

𝛿

2
z2

j +
i−1∑
j=2

𝜕𝛼j−1

𝜕

̂b
𝛿

2
zizj, (4)

with z0 = 0, 𝛼0(⋅) = 0 and |𝜔i(⋅)|F =
√∑i

k=1
∑q

j=1(𝜔i,kj)2.
In (4), ci, i = 1, … ,n are arbitrarily chosen positive constants introduced to provide stabilizing terms in Lyapunov

analysis and then ensure the stabilization of the controlled system; ̂𝜃 is the dynamic estimate of 𝓁
𝜃

that is often regarded
as the average of 𝜃(t); and design functions 𝜔i(⋅), i = 1, … ,n are defined as:

𝜔i(x[i], ̂𝜃, ̂b) = 𝜙i(x[i]) −
i−1∑
j=1

𝜕𝛼i−1

𝜕xj
𝜙j(x[j]). (5)

In (4), 𝜔i(⋅), i = 1, … ,n are smooth functions and satisfy 𝜔i(⋅) = 𝜔i(⋅)z[i]. Specifically, according to the smoothness of
𝜔i(x[i], ̂𝜃, ̂b) and𝜔i(0, ̂𝜃, ̂b) = 0, it follows that𝜔i(x[i], ̂𝜃, ̂b) = Wi(x[i], ̂𝜃, ̂b)x[i] with matrix-valued smooth function Wi(⋅). Also,
since functions 𝛼i(x[i], ̂𝜃, ̂b), i = 1, … ,n are smooth, we yield from (3) and (5) that x[i] = W i(x[i], ̂𝜃, ̂b)z[i] with matrix-valued
smooth function W i(⋅). Thus, we can express 𝜔i(⋅) as 𝜔i(⋅) = 𝜔i(⋅)z[i], where 𝜔i(⋅) = Wi(⋅)W i(⋅).

We design the tight adaptive event-triggered controller as:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

u(t) = 𝛼n

(
x(tk), ̂𝜃(tk), ̂b(tk), 𝜌̂(tk)

)
, ∀t ∈ [tk, tk+1),

𝛼n(x, ̂𝜃, ̂b, 𝜌̂) = − 𝜌̂

2
||𝜓||2zn − 𝛿

2

(||W n||2 + 1
)

zn,

̇

̂

𝜃 =
∑n

j=1𝜔jzj, ̂𝜃(0) ∈ Rq
,

̇

̂b = 𝛿

2

∑n−1
j=1 z2

j ,
̂b(0) ∈ R,

̇

𝜌̂ = 1
2
||𝜓||2z2

n, 𝜌̂(0) ∈ R+
,

(6)

where ̂b is the dynamic estimate of 𝓁b, 𝜌̂ is the dynamic estimate of 1
𝓁b

, 𝜓 is a to-be-determined smooth function, and
execution times tk’s are determined by the following event-triggering mechanism (t1 = 0):

tk+1 = inf
{

t > tk
|||||u(t) − 𝛼n

(
x(t), ̂𝜃(t), ̂b(t), 𝜌̂(t)

)|| > 𝛿||x||}. (7)

In (7), threshold parameter 𝛿 is a prespecified arbitrary positive constant, which is chosen by the designer according
to hardware devices and task requirements. Notably, the smaller the 𝛿, the faster the convergence speed, but the more
frequent sampling/execution and communication.

Remark 1. We develop two parameter dynamic compensators (i.e., ̂b and 𝜌̂) to counteract the negative effects
of time-varying control coefficient b(t). Compensator ̂b is specifically designed to deal with the coefficient b(t)
that multiplies by execution error, which is not needed in the continuous feedback context. On the other hand,
compensator 𝜌̂ is introduced to overcome the coefficient b(t) that multiplies by the nonlinearities containing
zn in step n. Notably, such coefficient b(t) cannot be compensated by compensator ̂b because it is not allowed
to contain zn. To be specific, compensator ̂b needs to enter the virtual controllers 𝛼i, i = 1, … ,n − 1 to offset
the unexpected terms caused by the execution error. Consequently, if ̂b contains zn, the partial derivatives of
𝛼i, i = 1, … ,n − 1 would yield new nonlinearities concerning zn. Such nonlinearities cannot be suppressed
by controller due to the presence of the control coefficient b(t), and furthermore, they would make the
recursive design into a dilemma. Therefore, we introduce compensator 𝜌̂, which exists only in 𝛼n. This is also
the reason why virtual controllers 𝛼i, i = 1, … ,n − 1 and 𝛼n are different in form.
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Next, we give an important lemma that provides a delicate characterization for the dynamic behavior of the closed-loop
system via Lyapunov function candidate. Particularly, we utilize unknown constant vector𝓁

𝜃

and constant𝓁b in Lyapunov
function candidate rather than time-varying parameters themselves (i.e., 𝜃(t) and b(t)), which avoids producing uncertain
(or non-existent) terms ̇

𝜃(t) and ̇b(t) when taking the derivative of Lyapunov function candidate. This process is called
congelation of variables.

Lemma 1. For system (2) under Assumptions 1 and 2, the event-triggered controller (6) with triggering mecha-
nism (7) makes Lyapunov function

V = 1
2

n∑
i=1

z2
i +

1
2
(𝓁
𝜃

− ̂

𝜃)T(𝓁
𝜃

− ̂

𝜃) + 1
2
(𝓁b − ̂b)2 + 1

2
𝓁b

(
1
𝓁b
− 𝜌̂

)2

, (8)

satisfy that, on [tk, tk+1),

̇V ≤ −
∑n

i=1ciz2
i , (9)

where constant vector 𝓁
𝜃

belongs to Θ and can be regarded as the average of 𝜃(t); constant 𝓁b > 0 is the lower
bound of b(t).

Proof of Lemma 1. We proceed with a recursive manner. To obtain a tight controller, we do not use conserva-
tive upper bounds of time-varying parameters throughout the controller design process, and furthermore, only
use one parameter dynamic compensator to deal with all unknown parameters 𝜃i(t), i = 1, … ,n by restoring
to tuning functions.

Step 1. Let V1 = 1
2

z2
1 +

1
2
(𝓁
𝜃

− ̂

𝜃)T(𝓁
𝜃

− ̂

𝜃). Then, taking the time derivative of V1 along the trajectories of
system (2) and applying transformation (3), we have

̇V 1 = z1(𝜃T
𝜙1 + z2 + 𝛼1) − (𝓁𝜃 − ̂

𝜃)T ̇̂𝜃. (10)

By adding and subtracting two terms z1 ̂𝜃
T
𝜔1 and z1𝓁T

𝜃

𝜔1, we yield from the definition of 𝜔1 in (5) that

z1𝜃
T
𝜙1 = z1𝜃

T
𝜔1 = z1 ̂𝜃

T
𝜔1 + z1ΔT

𝜃

𝜔1 + z1(𝓁𝜃 − ̂

𝜃)T𝜔1, (11)

where Δ
𝜃

(t) = 𝜃(t) − 𝓁
𝜃

indicates the deviation of 𝜃(t), and ||Δ
𝜃

(t)|| ≤ 𝛿Δ
𝜃

.
We next estimate the second term on the right-hand side of (11). From the definition of𝜔1 after (5), there is

z1ΔT
𝜃

𝜔1 = z1ΔT
𝜃

𝜔1z1 ≤
1
2
||Δ

𝜃

||2z2
1 +

1
2
||𝜔1||2z2

1 ≤
1
2
𝛿

2
Δ
𝜃

z2
1 +

1
2
|𝜔1|2

Fz2
1, (12)

where 𝛿Δ
𝜃

and |𝜔1|F have been defined in Assumption 1 and (4), respectively.
We define the first tuning function as:

𝜏1 = 𝜔1z1. (13)

Then, substituting (11) and (12) into (10), and by virtual control law 𝛼1 in (4), we conclude

̇V 1 ≤ z1z2 − c1z2
1 −

n − 1
2

𝛿

2
Δ
𝜃

z2
1 −

1
2

(
1 + 𝛿

(
̂b + 𝛿Δb

))
z2

1 + (𝓁𝜃 − ̂

𝜃)T(𝜏1 − ̇

̂

𝜃). (14)

Recursive design step i(i = 2, … ,n − 1). Suppose that steps 2, … , i − 1 have been completed, and Vi−1
satisfies

̇V i−1 ≤ zi−1zi −
i−1∑
j=1

cjz2
j −

n − i + 1
2

𝛿

2
Δ
𝜃

i−1∑
j=1

z2
j −

i−1∑
j=1

1
2

(
1 + 𝛿

(
̂b + 𝛿Δb

))
z2

j

−
i−1∑
j=2

𝜕𝛼j−1

𝜕

̂

𝜃

n∑
k=i
𝜔kzkzj −

i−1∑
j=2

𝜕𝛼j−1

𝜕

̂b

n−1∑
k=i

𝛿

2
z2

kzj + (𝓁𝜃 − ̂

𝜃)T(𝜏i−1 − ̇

̂

𝜃), (15)

where tuning functions 𝜏i = 𝜏i−1 + 𝜔izi, i = 2, … ,n − 2.
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6 CHU and LIU

Choose Vi = Vi−1 + 1
2

z2
i for step i. By (2) and (3), there is

̇V i = ̇V i−1 + zi(𝜃T
𝜙i + zi+1 + 𝛼i − 𝛼̇i−1). (16)

Noting (4) and (6), we have

zi𝛼̇i−1 = zi

i−1∑
j=1

𝜕𝛼i−1

𝜕xj
(xj+1 + 𝜃T

𝜙j) + zi
𝜕𝛼i−1

𝜕

̂

𝜃

n∑
j=1
𝜔jzj + zi

𝜕𝛼i−1

𝜕

̂b
𝛿

2

n−1∑
j=1

z2
j . (17)

By the definition of 𝜔i in (5) and the treatment similar to (11), we deduce

zi𝜃
T
𝜙i − zi

i−1∑
j=1

𝜕𝛼i−1

𝜕xj
𝜃

T
𝜙j = zi𝜃

T
𝜔i = zi ̂𝜃

T
𝜔i + ziΔT

𝜃

𝜔i + zi(𝓁𝜃 − ̂

𝜃)T𝜔i. (18)

From Assumption 1 and the definition of 𝜔i after (5), it follows that

ziΔT
𝜃

𝜔i = ziΔT
𝜃

𝜔iz[i] = zi

[
Δ
𝜃1 Δ

𝜃2 · · · Δ
𝜃q

]
⋅

⎡⎢⎢⎢⎢⎢⎣

(𝜔i)11 (𝜔i)12 · · · (𝜔i)1i

(𝜔i)21 (𝜔i)22 · · · (𝜔i)2i

⋮ ⋮ ⋱ ⋮

(𝜔i)q1 (𝜔i)q2 · · · (𝜔i)qi

⎤⎥⎥⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎢⎢⎣

z1

z2

⋮

zi

⎤⎥⎥⎥⎥⎥⎦
= ziΔ𝜃1

q∑
k=1
(𝜔i)k1z1 + · · · + ziΔ𝜃q

q∑
k=1
(𝜔i)kizi

≤
1
2
||Δ

𝜃

||2z2
1 +

1
2

q∑
k=1

||𝜔i||2
k1z2

i + · · · +
1
2
||Δ

𝜃

||2z2
i +

1
2

q∑
k=1

||𝜔i||2
kiz

2
i

≤

i∑
j=1

1
2
𝛿

2
Δ
𝜃

z2
j +

1
2
|𝜔i|2

Fz2
i . (19)

We select the ith tuning function as:

𝜏i = 𝜏i−1 + 𝜔izi. (20)

Then, substituting (17)–(19) into (16) and invoking (4) and (15) yield

̇V i ≤ zizi+1 −
i∑

j=1
cjz2

j −
n − i

2
𝛿

2
Δ
𝜃

i∑
j=1

z2
j −

i∑
j=1

1
2

(
1 + 𝛿

(
̂b + 𝛿Δb

))
z2

j

−
i∑

j=2

𝜕𝛼j−1

𝜕

̂

𝜃

n∑
k=i+1

𝜔kzkzj −
i∑

j=2

𝜕𝛼j−1

𝜕

̂b

n−1∑
k=i+1

𝛿

2
z2

kzj + (𝓁𝜃 − ̂

𝜃)T(𝜏i − ̇

̂

𝜃). (21)

This completes the first n − 1 steps. In step n, the analysis is quite different from that in previous steps due
to unknown time-varying control coefficient b(t) and execution error |u(t) − 𝛼n(t)|, and we therefore discuss
it in detail. Importantly, a new adaptive treatment for the execution error is offered in this step, which is one
of the main contributions of the paper.

Step n. We let V = Vn−1 + 1
2

z2
n +

1
2
(𝓁b − ̂b)2 + 1

2
𝓁b

(
1
𝓁b
− 𝜌̂

)2
for this step. Then, by (2) and (3), we have

̇V = ̇V n−1 + zn(𝜃T
𝜙n + bu − 𝛼̇n−1) − (𝓁b − ̂b) ̇̂b − 𝓁b

(
1
𝓁b
− 𝜌̂

)
̇

𝜌̂. (22)
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CHU and LIU 7

From (4) and (6), it follows that

zn𝛼̇n−1 = zn

n−1∑
j=1

𝜕𝛼n−1

𝜕xj
(xj+1 + 𝜃T

𝜙j) + zn
𝜕𝛼n−1

𝜕

̂

𝜃

n∑
j=1
𝜔jzj + zn

𝜕𝛼n−1

𝜕

̂b
𝛿

2

n−1∑
j=1

z2
j . (23)

By the definition of 𝜔n in (5), we have

zn𝜃
T
𝜙n − zn

n−1∑
j=1

𝜕𝛼n−1

𝜕xj
𝜃

T
𝜙j = zn𝜃

T
𝜔n = zn ̂𝜃

T
𝜔n + znΔT

𝜃

𝜔n + zn(𝓁𝜃 − ̂

𝜃)T𝜔n. (24)

Similar to (19), there is

znΔT
𝜃

𝜔n ≤

n∑
j=1

1
2
𝛿

2
Δ
𝜃

z2
j +

1
2
|𝜔n|2

Fz2
n. (25)

Substituting (23)–(25) into (22), by (21), we obtain

̇V ≤ zn−1zn −
n−1∑
j=1

cjz2
j −

1
2
𝛿

2
Δ
𝜃

n−1∑
j=1

z2
j −

n−1∑
j=1

1
2

(
1 + 𝛿

(
̂b + 𝛿Δb

))
z2

j −
n−1∑
j=2

𝜕𝛼j−1

𝜕

̂

𝜃

𝜔nznzj

+ (𝓁
𝜃

− ̂

𝜃)T(𝜏n−1 − ̇

̂

𝜃) + zn ̂𝜃
T
𝜔n +

1
2

n∑
j=1
𝛿

2
Δ
𝜃

z2
j +

1
2
|𝜔n|2

Fz2
n + (𝓁𝜃 − ̂

𝜃)Tzn𝜔n + buzn

− zn

n−1∑
j=1

𝜕𝛼n−1

𝜕xj
xj+1 − zn

𝜕𝛼n−1

𝜕

̂

𝜃

n∑
j=1
𝜔jzj − zn

𝜕𝛼n−1

𝜕

̂b
𝛿

2

n−1∑
j=1

z2
j − (𝓁b − ̂b) ̇̂b − 𝓁b

(
1
𝓁b
− 𝜌̂

)
̇

𝜌̂.

By defining 𝜏n = 𝜏n−1 + 𝜔nzn, the above inequality can be derived as:

̇V ≤ buzn −
n−1∑
j=1

cjz2
j −

n−1∑
j=1

1
2

(
1 + 𝛿

(
̂b + 𝛿Δb

))
z2

j + (𝓁𝜃 − ̂

𝜃)T(𝜏n − ̇

̂

𝜃) − (𝓁b − ̂b) ̇̂b − 𝓁b

(
1
𝓁b
− 𝜌̂

)
̇

𝜌̂

+ zn

(
zn−1 −

n−1∑
j=2

𝜕𝛼j−1

𝜕

̂

𝜃

𝜔nzj + ̂

𝜃

T
𝜔n +

1
2
𝛿

2
Δ
𝜃

zn +
1
2
|𝜔n|2

Fzn −
n−1∑
j=1

𝜕𝛼n−1

𝜕xj
xj+1 −

𝜕𝛼n−1

𝜕

̂

𝜃

n∑
j=1
𝜔jzj −

𝜕𝛼n−1

𝜕

̂b
𝛿

2

n−1∑
j=1

z2
j

)
.

(26)

Invoking the dynamics of ̂𝜃 in (6) and the definition of 𝜏n yields

̇V ≤ b𝛼nzn + b(u − 𝛼n)zn −
n∑

j=1
cjz2

j −
n−1∑
j=1

1
2

(
1 + 𝛿

(
̂b + 𝛿Δb

))
z2

j −
1
2

z2
n + zn𝜓 − (𝓁b − ̂b) ̇̂b − 𝓁b

(
1
𝓁b
− 𝜌̂

)
̇

𝜌̂, (27)

where 𝜓(x, ̂𝜃) = 1
2

zn + cnzn + zn−1 −
∑n−1

j=2
𝜕𝛼j−1

𝜕

̂

𝜃

𝜔nzj + ̂

𝜃

T
𝜔n + 1

2
𝛿

2
Δ
𝜃

zn + 1
2
|𝜔n|2

Fzn −
∑n−1

j=1
𝜕𝛼n−1
𝜕xj

xj+1 −
𝜕𝛼n−1

𝜕

̂

𝜃

∑n
j=1𝜔jzj −

𝜕𝛼n−1

𝜕

̂b
𝛿

2

∑n−1
j=1 z2

j .
Note that 𝜓(x, ̂𝜃) is smooth and 𝜓(0, ̂𝜃) = 0. Then, similar to the definition of 𝜔 after (5), we get 𝜓(x, ̂𝜃) =

𝜓

T(x, ̂𝜃)z with 𝜓 smooth function. Based on this, we estimate the sixth term on the right-hand side of (27) as
follows:

zn𝜓 = zn𝜓
Tz ≤

n∑
j=1

1
2

z2
j +

1
2
||𝜓||2z2

n. (28)

We next calculate the second term on the right-hand side of (27), which refers to the execution error term.
By the definition of W n after (5) and triggering mechanism (7), we have, on [tk, tk+1),

b(u − 𝛼n)zn ≤ b𝛿||x|| ⋅ |zn| = b𝛿||W nz|| ⋅ |zn| ≤ b𝛿
2
||W n||2z2

n +
b𝛿
2

n∑
j=1

z2
j =

b𝛿
2

(||W n||2 + 1
)

z2
n +

b𝛿
2

n−1∑
j=1

z2
j . (29)
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8 CHU and LIU

Substituting (28) and (29) into (27) yields, on [tk, tk+1),

̇V ≤ −
n∑

j=1
cjz2

j + b𝛼nzn +
b𝛿
2

(||W n||2 + 1
)

z2
n +

b𝛿
2

n−1∑
j=1

z2
j −

n−1∑
j=1

𝛿

2

(
̂b + 𝛿Δb

)
z2

j +
1
2
||𝜓||2z2

n − (𝓁b − ̂b) ̇̂b − 𝓁b

(
1
𝓁b
− 𝜌̂

)
̇

𝜌̂.

(30)
Notably, the fourth term on the right-hand side of (30), caused by the execution error (see (29)), cannot

be suppressed by controller 𝛼n(⋅) because it is not multiplied by zn. Furthermore, virtual controllers 𝛼i(⋅),
i = 1, … ,n − 1 are unable to offset it directly because it contains unknown time-varying parameter b(t). To
this end, we do the following important decomposition:

b𝛿
2

n−1∑
j=1

z2
j =

𝛿

2
̂b

n−1∑
j=1

z2
j +

𝛿

2
Δb

n−1∑
j=1

z2
j +

𝛿

2
(𝓁b − ̂b)

n−1∑
j=1

z2
j , (31)

where 0 < Δb = b − 𝓁b ≤ 𝛿Δb (see Assumption 2 and its interpretation). Then, the first two terms on the
right-hand side of (31) can be offset by virtual controllers 𝛼i, i = 1, … ,n − 1, where two competent damp-
ing terms have been pre-arranged. The last term of (31) can be counteracted by the dynamics of ̂b, which is
specialized to “ b𝛿

2

∑n−1
j=1 z2

j ” and is not needed in the continuous feedback context.
The sixth term on the right-hand side of (30), caused by the system nonlinearities, also cannot be directly

counteracted by the controller due to the existence of unknown control coefficient b(t). Moreover, compen-
sator ̂b is unable to dominate the term because ̂b is not allowed to contain zn. We therefore resort to the
compensator 𝜌̂ and do another delicate decomposition:

1
2
||𝜓||2z2

n = 𝓁b

(
1
𝓁b
− 𝜌̂

)
1
2
||𝜓||2z2

n + 𝓁b𝜌̂
1
2
||𝜓||2z2

n

= 𝓁b

(
1
𝓁b
− 𝜌̂

)
1
2
||𝜓||2z2

n + b𝜌̂1
2
||𝜓||2z2

n − Δb𝜌̂
1
2
||𝜓||2z2

n. (32)

Then, the first term of (32) can be dominated by the dynamics of 𝜌̂, the second term can be offset by the virtual
controller 𝛼n and the perturbation term “−Δb𝜌̂

1
2
||𝜓||2z2

n” is nonpositive.

Substituting (31) and (32) into (30), and invoking 𝛼n, ̇̂b and ̇

𝜌̂ in (6), we obtain, on [tk, tk+1),

̇V ≤ −
n∑

j=1
cjz2

j − Δb𝜌̂
1
2
||𝜓||2z2

n. (33)

By ̇

𝜌̂ = 1
2
||𝜓||2z2

n in (6) and 𝜌̂(0) > 0, we know that 𝜌̂(t) > 0 on the maximal existence interval of the
solution of the closed-loop system. Thus, by Δb > 0 in (31), we conclude that −Δb𝜌̂

1
2
||𝜓||2z2

n ≤ 0 and (9)
holds. ▪

Remark 2. To deal with the control coefficient b(t), we also use the congelation of variables method motivated
by work,8 but the analysis pattern is quite different from that of 𝜃(t). But in work,8 control coefficient b(t)was
treated in almost the same way as parameter 𝜃(t), and the term b(t)u(t)was sorted out into three terms includ-
ing ū, 1

̂𝓁b
Δbū and −𝓁b

(
1
𝓁b
− 1

̂𝓁b

)
ū, where u = 1

̂𝓁b
ū. This seems unwise in the event-triggered context because

such treatment would derive three intractable terms containing execution error. In contrast, we do not sort out
b(t)u(t) but exploit two dynamic parameter compensators (i.e., ̂b and 𝜌̂) and two important decompositions
(i.e., (29) and (32)) to eliminate the influence of control coefficient b(t), and thus we do not cause additional
execution error terms.

For better understanding, we provide the following adaptive event-triggered controller design algorithm to intuitively
display the design procedure (Algorithm 1).
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CHU and LIU 9

Algorithm 1. Adaptive event-triggered controller design

Input: State x of system (2), “radius” 𝛿Δ
𝜃

and “radius” 𝛿Δb in Assumptions 1 and 2, respectively, design parameters ci,
i = 1,… ,n in virtual controllers (4), and the prespecified parameter 𝛿 in triggering mechanism (7).

Output: Triggering instants tk, k = 1, 2,… and controller u(t).
Initialization: i = 1, t1 = 0;
while i ≤ n do

1: Set Vi: V1 = 1
2

z2
1 +

1
2
(𝓁
𝜃

− ̂

𝜃)T(𝓁
𝜃

− ̂

𝜃), Vj = Vj−1 + 1
2

z2
j (j = 2,… ,n − 1), Vn = Vn−1 + 1

2
z2

n +
1
2
(𝓁b − ̂b)2 +

1
2
𝓁b

( 1
𝓁b
− 𝜌̂

)2;
2: Take the time derivative of Vi along the trajectories of system (2);
3: Design appropriate virtual controller 𝛼i to compensate/dominate the destabilizing terms in ̇Vi;
if i = n then

Design the dynamics of parameter compensators ̂𝜃, ̂b and 𝜌̂ to counteract the uncertainties and execution error;
while tk ≤ Te do

if t ≥ tk && |u(tk) − 𝛼n(x(t), ̂𝜃(t), ̂b(t), 𝜌̂(t))| ≥ 𝛿‖x‖ then
tk+1 = t,
u(t) = 𝛼n(tk+1).

end if
end while

end if
4: i = i + 1.

end while
return tk, k = 1, 2,… and u(t).

3 MAIN RESULTS

This section collects the main results on the adaptive event-triggered controller designed above, and par-
ticularly analyzes the performance of the closed-loop system composed of (2) and (6) under the triggering
mechanism (7).

Note from system (2) that 𝜙i(x[i])’s i = 1, … ,n are smooth and then locally Lipschitz. Thus, the right-hand side of
the closed-loop system is locally Lipschitz in (x, ̂𝜃, ̂b, 𝜌̂) and continuous in t. By the existence and uniqueness theorem
and the continuation theorem, one can obtain that, for any initial value

(
x(0), ̂𝜃(0), ̂b(0), 𝜌̂(0)

)
∈ Rn × Rq × R × R+, the

closed-loop system has a unique solution
(

x(t), ̂𝜃(t), ̂b(t), 𝜌̂(t)
)

on the maximal existence interval [0,Te), where Te = +∞
or 0 < Te < +∞. Here, 0 < Te < +∞ means finite escape time exists or Zeno behavior occurs.

Before embarking on the concluding theorem, we give an important proposition, which greatly facilitates the analysis
of system performance later on. The rigorous proof of the proposition is somewhat involved and thus is postponed to the
Appendix.

Proposition 1. Suppose that all the closed-loop system signals are bounded on [0,Te). Then, there is no Zeno
phenomenon.

Now, we present the concluding theorem on adaptive event-triggered stabilization.

Theorem 1. Consider system (2) under Assumptions 1 and 2. The proposed adaptive event-triggered controller
(6) with (7) can guarantee that, for any initial value

(
x(0), ̂𝜃(0), ̂b(0), 𝜌̂(0)

)
∈ Rn × Rq × R × R+, the unique

solution of the closed-loop system is defined on [0,+∞), and the following properties are satisfied: (i) all the
closed-loop system signals are bounded; (ii) no infinitely fast execution, including Zeno behavior, occurs; (iii)
system state x asymptotically converges to zero.

Proof of Theorem 1. By Lemma 1, we have ̇V(t) ≤ −
∑n

i=1ciz2
i (t) for any t ∈ [tk, tk+1), which implies V(t) −

V(tk) ≤ −
∑n

i=1ci∫
t

tk
z2

i (s)ds. Then, from the continuity of V , it can be recursively obtained that, on [0,Te),
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10 CHU and LIU

V(t) − V(0) ≤ −
n∑

i=1
ci
∫

t

0
z2

i (s)ds ≤ 0. (34)

By this and the definition of V in (8), we get

1
2

n∑
i=1

z2
i (t) +

1
2
(𝓁
𝜃

− ̂

𝜃(t))T(𝓁
𝜃

− ̂

𝜃(t)) + 1
2
(𝓁b − ̂b(t))2 + 1

2
𝓁b

(
1
𝓁b
− 𝜌̂(t)

)2

≤ V(0) < +∞.

This implies that signals zi’s, ̂𝜃, ̂b and 𝜌̂ are bounded on [0,Te), which, together with (2)–(6), leads to the bound-
edness of xi’s, 𝛼i(⋅)’s and u. Then, we can conclude from Proposition 1 that there is no Zeno phenomenon,
and furthermore, Te = +∞. Therefore, it follows that all signals of the closed-loop system are bounded and
no infinitely fast execution occurs on [0,+∞).

We next prove the convergence of x. By (34), and noting the boundedness of V on [0,+∞), we have
∫
+∞

0 ||z(t)||2dt ≤ +∞, which, together with transformation (3) and the boundedness of xi’s, 𝛼i(⋅)’s and ̂𝜃, implies
∫
+∞

0 ||x(t)||2dt ≤ +∞. We also obtain from the boundedness of xi’s, u, 𝜃 and b that ẋ is bounded. Then, utilizing
Barbǎlat’s Lemma yields limt→+∞ x(t) = 0.

This completes the proof of Theorem 1. ▪

4 SIMULATION RESULTS

In this section, we verify the effectiveness of the proposed adaptive event-triggered control scheme by a time-varying
mass-spring mechanical system. In addition, we provide two comparative experiments. The first aims to demonstrate the
less conservative of the designed tight controller. For this, we compare our control scheme with conventional adaptive
ones6,7,28 that used conservative bounds (i.e. (37)) of uncertainties during the controller design. The second focuses on
comparing the control methods with and without the event-triggered control, showing that the event-triggered control
method can largely save communication and computation resources.

Consider the following controlled mass-spring model9:

mÿ + Ff + Fsp = F, (35)

where m is the mass of the slider; y is the displacement from a reference position; Ff = c(1 + sin t)v is a frictional resistance
with the sliding velocity v = ẏ and an unknown constant c > 0; Fsp = ky is the restoring force of the spring with the
unknown spring constant k; and F = c(1 + 0.5 sin t)u is a time-varying external force acting on the sliding.

We first show the convergence of (y, ẏ) to (0, 0) via the proposed adaptive event-triggered controller. Let x1 = y and
x2 = ẏ. Then, the objective is transformed into regulating (x1, x2) to (0, 0) for the following system:

{
ẋ1 = x2,

ẋ2 = c(1+0.5 sin t)
m

u − k
m

x1 − c(1+sin t)
m

x2.
(36)

Clearly, system (36) satisfies Assumptions 1 and 2 with 𝜃1(t) = 0, 𝜃2(t) = [𝜃21, 𝜃22]T =
[

k
m
,

c(1+sin t)
m

]T
, 𝜙1(⋅) = 0, 𝜙2(⋅) =

[−x1,−x2]T and b(t) = c(1+0.5 sin t)
m

.
Select virtual controller 𝛼1 in the form of (4) with q = 3 and event-triggered controller u in the form of

(6) with (7). Following the recursive design procedure in Section 2, we can deduce design functions involved:

𝜙1(⋅) = 𝜔1(⋅) = 𝜔1(⋅) = 0, 𝜙2(⋅) = 𝜔2(⋅) = [0,−x1,−x2]T, 𝜔2(⋅) =

[ 0 0
−1 0
C −1

]
, W2(⋅) =

[
1 0
−C 1

]
, 𝜓(⋅) =

(
1 − C2) z1 +

𝛿

2

4
z3

1 +
(

1
2
𝛿

2
Δ
𝜃

+ 1
2
|𝜔2|2

F + C + 1
2
+ c2

)
z2 + ̂

𝜃

T
𝜔2 and 𝜓(⋅) =

[
1 − C2 + 𝛿

2

4
z2

1 − ̂

𝜃2 + ̂

𝜃3C, 1
2
𝛿

2
Δ
𝜃

+ 1
2
|𝜔2|2

F + C + 1
2
+ c2 − ̂

𝜃3

]T
,

where C = c1 + 𝛿2
Δ
𝜃

+ 1
2
+ 𝛿

2

(
̂b + 𝛿Δb

)
and ̂

𝜃i is the ith entry of vector ̂𝜃, i = 2, 3.

Let m = k = c = 1, c1 = 1, c2 = 2, 𝛿Δ
𝜃

= 𝛿Δb = 0.2 and 𝛿 = 0.1. With the initial values: x1(0) = −4, x2(0) = 6, ̂𝜃(0) =
[0.6, 0.6, 0.6]T, ̂b(0) = 0.6 and r̂(0) = 0.6, simulation results are displayed in Figures 1 and 2. Apparently, the figures show
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F I G U R E 1 Evolution of system states x1 and x2, controller u and inter-execution time under our scheme.
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F I G U R E 2 Evolution of || ̂𝜃||2, ̂b and 𝜌̂ under our scheme.

that all signals of the closed-loop system are bounded and system states (i.e., x1 and x2) converge to 0. In addition, Figure 1
illustrates that the proposed control scheme has no Zeno behavior.

To demonstrate the less conservative of the designed tight controller, we give a conventional adaptive event-triggered
control scheme for system (36). Specifically, the coordinate transformation is the same as (3), and Lyapunov function
candidate is selected as V = 1

2
z2

1 +
1

2b
z2

2 +
1
2

r̃2. In V , b is an unknown constant and satisfies 0 < b ≤ b(t); r̃ = r − r̂ and r is
defined as:

r = sup
t≥0

||Ω(t)||, (37)

where Ω(t) =
[
𝜃

b
,

𝜃

b
,

D
b
,

D2

b
,

𝛿b
2

2b2

]
with unknown constants 𝜃 and b satisfying 𝜃 = supt≥0 ||𝜃(t)|| and b(t) ≤ b < ∞, respec-

tively. To make V satisfy ̇V ≤ −c1z2
1 − c2z2

2, the virtual controllers and parameter dynamic compensator are chosen
as 𝛼1(x1, r̂) = −Dz1, 𝛼2(x, r̂) = −c2z2 − z2 − 𝛿

2
z2 − 1

4
||𝜑||2z2 − 1

4
r̂2||𝜑||2z2 and ̇r̂ = − 1

2
||𝜑||2z2

2, where D = c1 + 1 + 𝛿

2
, 𝜑 =⎡⎢⎢⎢⎢⎣

−1 0
c1 −1
0 1
−1 0
0 2 + D

⎤⎥⎥⎥⎥⎦
, 𝛿 is the prespecified threshold parameter in triggering mechanism, and c1, c2 are positive constants.

Choosing the same initial values as before, we get Figures 3 and 4, which show that the conventional control scheme
can also achieve the asymptotical stabilization of system (36). Notably, by Figures 1 and 3, we can conclude that the
control peak under our scheme is smaller than that under the conventional scheme. Therefore, we claim that the designed
tight controller is less conservative in this point. Such less conservatism is because our scheme applies the congealed
parameters of 𝜃(t) and b(t) in the controller design, rather than their bounds (i.e., (37)) like the conventional schemes.
Hence, our control scheme avoids the overuse of dominations and leads to a less conservative controller.

We next compare the control methods with and without the event-triggered control. Removing the event-triggering
mechanism from the proposed control scheme, we obtain a continuous-time control scheme. In particular, dynamic com-
pensator ̂b is no longer required since there is no execution error. Following the proposed scheme, the continuous-time
controller is as follows: 𝛼1(x1, ̂𝜃) = −C′z1 and u(x, ̂𝜃, 𝜌̂) = − 𝜌̂

2
||𝜓||z2 with C′ = c1 + 1

2
𝛿Δ

𝜃

+ 1
2
, where the dynamics of ̂𝜃

and 𝜌̂, and smooth function 𝜓 are the same as the proposed scheme. With the same parameters and initial values, the
simulation results are shown in Figures 5 and 6.
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F I G U R E 4 Evolution of ||r̂||2 and inter-execution time under the conventional adaptive control scheme.
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CHU and LIU 13

By comparing the simulation results under the proposed scheme and the continuous-time control scheme, we find
that the control peak in the latter is smaller than that in the former. This is reasonable because in continuous-time
control scheme, richer and more complete information is transmitted and used for feedback, resulting in more timely
and accurate control commands. However, the high performance of continuous-time control scheme comes at the
cost of consuming a lot of communication/computation resources. With a step size of 1.25 × 10−6, for example, the
number of sampling during the initial 10 s of continuous-time control is infinitely large, while that of event-triggered
control is only 409. Therefore, event-triggered control is superior to continuous-time control in terms of resource
conservation.

5 CONCLUDING REMARKS

In this paper, an adaptive event-triggered control scheme for global stabilization has been developed for nonlinear systems
with time-varying parameter uncertainties. Particularly, we avoid taking the derivative of time-varying uncertainties and
circumvent estimating/utilizing the conservative upper bounds of time-varying uncertainties throughout the controller
design process. Then, the overuse of dominations is avoided and noise amplification problems are weakened. Thus, we
claim that the designed controller is tight or less conservative. Nevertheless, the proposed scheme has some limitations.
The scheme is tailored to the stabilization problem and cannot be directly extended to the tracking problem. Moreover,
the scheme is restricted to the scenario where the information transmission between sensor and controller is continuous,
and only transmission between controller and actuator is governed by an event-triggering mechanism. In the future, we
will strive to extend the proposed scheme to a tracking control problem, while considering double-side (asynchronous)
event-triggered control.
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APPENDIX

Proof of Proposition 1. We consider the following two cases: (i) ||x(t∗)|| = 0, ∃t∗ ∈ [tk, tk+1); (ii) ||x(t)|| ≠
0, ∀t ∈ [tk, tk+1).

In case (i), we have x(t∗) = 0, where t∗ ∈ [tk, tk+1). Then, by (2)–(6), we get u(t∗) = 0 and 𝜙i(x[i](t∗)) = 0,
and furthermore, ẋi(t∗) = 0, i = 1, … ,n. Thus, ||x(t)|| = 0 for any t ≥ t∗, which, together with event-triggering
mechanism (7), yields that the triggering condition is not satisfied any more and Zeno phenomenon does not
occur.

In case (ii), we let e(t) = |u(t) − 𝛼n(t)| and define 𝜂(t) = e(t)||x(t)|| for t ∈ [tk, tk+1). Then, by the triggering

mechanism (7), one can obtain that 𝜂(tk) = 0 and 𝜂
(

t−k+1

)
= 𝛿.

Taking the time derivative of 𝜂, we have

D+
𝜂 = ||x||D+e − eD+||x||||x||2 . (A1)

Note that D+||x|| = xT

||x||D+x ≤ ||D+x||. Then, from (2), there is

||D+x|| ≤ n−1∑
i=1

||||𝜙
T
i 𝜃 + xi+1

|||| +
||||𝜙

T
n𝜃 + b𝛼n + b(u − 𝛼n)

||||
≤

n∑
i=1

||||𝜙
T
i 𝜃

|||| +
n∑

i=1
|xi| + b|𝛼n| + b|u − 𝛼n|. (A2)
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By the method of completing square, we have

⎧⎪⎨⎪⎩
∑n

i=1
||||𝜙

T
i 𝜃

|||| ≤
√

n||𝜃|| ⋅ ||𝜙|| ≤√
n||𝜃|| ⋅ ||Φ|| ⋅ ||x||,∑n

i=1|xi| ≤√
n||x||, (A3)

where 𝜙 =
[
𝜙1, … , 𝜙n

]T
and Φ(x) is a smooth function. The existence of Φ is due to 𝜙(0) = 0 and the

smoothness of 𝜙(x).
Noting zn(0, ̂𝜃, ̂b) = 0 and the smoothness of zn(x, ̂𝜃, ̂b), we have zn = ΨT(x, ̂𝜃, ̂b)x, and then, by the

definition of 𝛼n in (6), we get

b|𝛼n| ≤ b
2
𝜌̂||𝜓||2 ⋅ |zn| + 𝛿b

2

(||W n||2 + 1
)
⋅ |zn| =

(
b
2
𝜌̂||𝜓||2 + 𝛿b

2

(||W n||2 + 1
))

⋅ ||Ψ|| ⋅ ||x||, (A4)

where Ψ(x, ̂𝜃, ̂b) is a smooth function.
From the triggering mechanism, it follows that |u − 𝛼n| ≤ 𝛿||x|| on [tk, tk+1). Then, substituting (A3) and

(A4) into (A2) yields

||D+x|| ≤ 𝛽1(x, ̂𝜃, ̂b, 𝜌̂)||x||, (A5)

where 𝛽1(⋅) =
√

n||𝜃|| ⋅ ||Φ|| +√
n + b

2
𝜌̂||𝜓||2 ⋅ ||Ψ|| + 𝛿b

2

(||W n||2 + 1
)
⋅ ||Ψ|| + b𝛿.

Similar to (A5), by invoking (2) and (6), we have

D+e = D+|u − 𝛼n| ≤ |𝛼̇n|
=

||||||
n−1∑
i=1

𝜕𝛼n

𝜕xi
(𝜙

T
i 𝜃 + xi+1) +

𝜕𝛼n

𝜕xn
(𝜙

T
n𝜃 + bu) + 𝜕𝛼n

𝜕

̂

𝜃

̇

̂

𝜃 + 𝜕𝛼n

𝜕

̂b
̇

̂b + 𝜕𝛼n

𝜕𝜌̂

̇

𝜌̂

||||||
≤

||||||
n∑

i=1

𝜕𝛼n

𝜕xi
𝜙

T
i 𝜃 +

n−1∑
i=1

𝜕𝛼n

𝜕xi
xi+1 +

𝜕𝛼n

𝜕xn
b𝛼n +

𝜕𝛼n

𝜕

̂

𝜃

̇

̂

𝜃 + 𝜕𝛼n

𝜕

̂b
̇

̂b + 𝜕𝛼n

𝜕𝜌̂

̇

𝜌̂

|||||| +
||||𝜕𝛼n

𝜕xn
b(u − 𝛼n)

||||
≤ 𝛽2(x, ̂𝜃, ̂b, 𝜌̂)||x||, (A6)

where 𝛽2(⋅) is a smooth function.
Substituting (A5) and (A6) into (A1), we obtain

D+
𝜂 ≤

𝛽2||x||2 + e𝛽1||x||||x||2 = 𝛽2 + 𝛽1𝜂 ≤ 𝜆(𝜂 + 1), (A7)

where 𝜆 is the maximum of 𝛽1(⋅) and 𝛽2(⋅) on the maximal existence interval of the solution of the closed-loop
system.

By the boundedness of x, ̂𝜃, ̂b and 𝜌̂, we get that 𝜆 is bounded. Then, integrating both sides of (A7) yields
𝜂(t) ≤ e𝜆(t−tk) − 1, which implies

tk+1 − tk ≥
1
𝜆

ln(𝛿 + 1) > 0. (A8)

Thus, Zeno behavior does not occur. ▪
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